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ABSTRACT

Asynchronous designs have been demonstrated to be able to achieve both higher perfor-

mance and lower power compared with their synchronous counterparts [50] [51] [19]. It provides

a very promising solution to the emerging challenges in advanced technology. However, due

to the lack of proper EDA tool support, the design cycle for asynchronous circuits is much

longer compared with the one for synchronous circuits. Thus, even with many advantages,

asynchronous circuits are still not the mainstream in the industry. In this thesis, we provides

several algorithms to resolve the emerging issues for the physical design of asynchronous cir-

cuits. Our proposed algorithms optimize asynchronous circuits using placement, gate sizing,

repeater insertion and pipeline buffer insertion techniques. An incremental maximum cycle

ratio algorithm is also proposed to speed up the timing analysis of asynchronous circuits.
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CHAPTER 1. OVERVIEW

With the continual diminishing of feature size, integrated circuit (IC) design is progressively

more difficult. Synchronous design is facing particularly severe challenges due to the increasing

variations in process parameters and demand in low power consumption. Asynchronous design

provides a very promising solution to the emerging challenges in advanced technology. An asyn-

chronous circuit, or self-timed circuit, is a sequential digital logic circuit which is not governed

by a clock circuit or global clock signal. Instead they often use signals that indicate completion

of instructions and operations, specified by simple data transfer protocols. In theory, the po-

tential advantages of asynchronous design over synchronous design include robustness towards

process-voltage-temperature (PVT) variations, lower power consumption, avoidance of the dif-

ficult problem of clock distribution, higher operating speed, less emission of electromagnetic

noise, lower stress on power distribution network, improved security, and better composability

and modularity [2] [9] [52]. However, even asynchronous design has all the potential advan-

tages, synchronous circuits still predominate. The main reason is that asynchronous circuit is

generally harder to design. It requires designers to pay a lot of attention to issues like hazards,

dynamic states and ordering of operations. It also requires designers to develop a very different

mindset and to learn very different techniques. Another reason is that computer-aided design

(CAD) tool support for asynchronous design is grossly inadequate. As a result, asynchronous

design is not popular in practice. Therefore, in this thesis, we force on developing the physical

design algorithms for asynchronous circuits.
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1.1 Physical Design for Asynchronous Circuits

In integrated circuit design, physical design is a step in the standard design cycle which

follows after the circuit design. At this step, circuit representations of the components (devices

and interconnects) of the design are converted into geometric representations of shapes which,

when manufactured in the corresponding layers of materials, will ensure the required functioning

of the components. This geometric representation is called integrated circuit layout. This step

is usually split into several sub-steps, which include both design and verification and validation

of the layout.

Physical design algorithms for synchronous circuits, including placement, gate sizing, re-

peater insertion, etc, have been studied for decades and are quit mature. However, very few

works have been done for asynchronous circuits, and most existing works for asynchronous phys-

ical design directly leverage synchronous CAD tools [6] [90] [78]. For synchronous circuit, the

circuit performance is bounded by the most critical path and synchronous CAD tools will mini-

mize the maximum path delay between flip-flops. However, in the case of asynchronous circuit,

the performance is bounded by the most critical cycle [9]. This creates issues when applying

synchronous tools for asynchronous optimization, since the optimization objective is different

and timing-loops are not supported. Another issue to leverage synchronous placement tool is to

enforce the timing constraints necessary for the functional correctness of asynchronous circuits.

Instead of setup and hold time constraints for typical synchronous design, certain asynchronous

design style requires relative timing constraints which constrains the relative delay between two

paths [74]. Some other design styles require minimum and maximum bounded delay values on

gates and wires [76]. This difference of timing assumptions between asynchronous design and

synchronous design creates extra difficulties when applying synchronous placement tools to

asynchronous design. Therefore, it is important for us to propose physical design algorithms

which specifically target at optimizing asynchronous circuits.
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1.1.1 Placement

Placement is a critical step in VLSI design flow. It decides cell locations, which to a large

extent determines the length of interconnects and hence the interconnect parasitics. Placement

has been shown to have a great impact on the final circuit quality implemented in advanced

process [85]. In advanced technology, the importance of placement continues to grow, since it

determines the interconnect delay, which has been a dominating factor of the circuit delay.

The placement of circuit is usually performed in two steps: global placement and detailed

placement. Global placement aims at generating a rough placement solution that may violate

some placement constraints (e.g., there may be overlaps among modules) while maintaining a

global view of the whole netlist. Detailed placement further improves the legalized placement

solution in an iterative manner by rearranging a small group of modules in a local region while

keeping all other modules fixed.

The placement problem for asynchronous circuits is different from the traditional syn-

chronous performance-driven placement formulation. Roughly speaking, as the performance

is determined by the longest delay loop, the placement algorithm should minimize the length

of interlocked loops. A similar problem has been considered in [34]. Another difference is that

there is no need to consider the clock network construction during placement. In synchronous

circuit placement, it is beneficial to bring sequencing elements closer together so as to minimize

the wirelength of the clock network. We can simply ignore this issue here.

1.1.2 Gate Sizing and Repeater Insertion

Gate sizing and buffer insertion are techniques to allocate enough drive strength to drive

the load of a circuit. They have been demonstrated to be very effective in optimizing circuit

timing and in fulfilling signal transition time constraints. They are indispensable in synchronous

design. It is very clear that they should also be applied to asynchronous design.

In advanced process, the resistance and capacitance of interconnects are dominating. Hence,

one cannot reasonably estimate the interconnect parasitics until at least after placement. The

dilemma is that without parasitics, logic and circuit optimizations (including gate sizing and
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buffer insertion) cannot be reliably performed. But without performing optimizations, the

netlist is not finalized and hence placement cannot be done. For synchronous design, this

chicken-or-egg problem results in the timing closure issue. This is solved by the physical

synthesis methodology, which integrates logic synthesis and optimization with placement, and

incrementally refines the netlist and layout through multiple iterations. This iterative process

sometimes takes a long time to converge and it may not converge to a good solution. For

asynchronous circuit, the situation is better as it can adapt to any timing uncertainty. Even

if logic synthesis and optimization are done completely before placement (i.e., without any

information on interconnect parasitics), the resulting circuit will still be functional although

the performance will be very sub-optimal.

Gate sizing and repeater insertion for synchronous circuits has been studied for decades and

there are many works tackling these problems [14] [26] [80]. However, for asynchronous circuits,

there are only very few works on it. Most of the automatic synthesis flows for asynchronous

circuits try to directly leverage synchronous EDA tools [6] [78]. As the circuit structure,

performance metric and timing constraints for asynchronous circuits are quite different from

those for synchronous circuits, these approaches require to break the timing-loops and add

explicit timing constraints the number of which is exponential to the circuit size. For large scale

designs, the complicated timing constraints are beyond the ability of synchronous EDA tools

to handle thus inferior results are generated. In [30], a genetic algorithm based simultaneous

gate sizing and Vth assignment technique specific for asynchronous circuits has been proposed

to minimize the leakage power while maintaining the performance requirements. However,

genetic algorithms usually have long runtime and are not scalable, which makes it unsuitable

for large scale circuits.

1.1.3 Slack Matching

Slack matching resolves the stalls of the circuit by inserting pipeline buffers, and this type

of optimization is specifically used for the optimization of asynchronous circuits. In particular,

stalls are major obstacles limiting the performance of pipelined asynchronous circuits [72]. Due

to the slack elasticity for most asynchronous designs, adding pipeline buffers to the design
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will not change its input/output functionality, but can help remedy the stalls [7]. Thus, slack

matching, which inserts minimum number of pipeline buffers to guarantee the most critical cycle

meets the desired cycle time, is widely used for asynchronous circuits [9]. Most previous works

related to slack matching formulate the problem as a mixed integer linear program (MILP)

[7] [67] [54], which is NP-Complete and the integral constraints need to be relaxed in order to

solve the problem efficiently. In [81], a heuristic algorithm is proposed to solve the problem by

leveraging the asynchronous communication protocol.

1.1.4 Timing Analysis

A fast and accurate static timing analysis (STA) method is essential to guide the physical

design algorithms to achieve a good solution within a short amount of runtime. For synchronous

circuits, this can be done by a simple graph traversal as the corresponding combinational logic

network can be represented as a directed acyclic graph (DAG). However, for asynchronous

circuits, the way to perform STA is not straightforward due to its more general circuit structure

which might contain internal combinational loops. In [66], a STA flow on pre-charged half

buffer (PCHB) and Multi-Level Domino (MLD) templates has been proposed, which leverages

a commercialized synchronous timing analyzer. However, this approach is limited to template

based designs as automatically finding the cut points requires a regular circuit structure. Also,

the achieved timing value is not accurate as time borrowing across the broken segments is not

allowed.

STA for asynchronous circuits can be reduced to the maximum cycle ratio problem. Given

a directed cyclic graph and each edge in the graph is associated with two numbers: cost and

transition time. Let the cost (respectively, transition time) of a cycle in the graph be the sum

of the costs (respectively, transition times) of all the edges within this cycle. Assuming the

transition time of a cycle is non-zero, the ratio of this cycle is defined as its cost divided by its

transition time. The maximum cycle ratio problem finds the cycle whose ratio is the maximum

in a given graph [18].
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1.2 Research Contributions

The main contributions of this thesis are as follows:

• An effective timing-driven global placement approach for asynchronous circuits [88].

Based on the Lagrangian relaxation framework, we are able to transfer the timing-driven

placement problem into the wirelength minimization problem. The transformed problem

can then be efficiently solved using any standard wirelength-driven placement engine that

can handle net weights.

• A timing-driven global placement approach which is applicable to synchronous circuits,

synchronous circuits with sequential optimization techniques and asynchronous circuits.

In particular, we proposed two different approaches on applying the Lagrangian relaxation

framework to the timing driven placement problem and compared their effectiveness.

• A detailed placement approach which can handle designs with any number of double-row

height standard cells [86]. In particular, we transformed single-row height cells to double-

row height by either expanding the cell or pairing up two single-row height cells together

based on our maximum weighted matching algorithm.

• A gate sizing and Vth assignment approach for asynchronous circuits [89]. We also pro-

posed a fast and effective slew updating strategy which is able to address the timing-loops

of asynchronous circuits during static timing analysis.

• A unified optimization flow for asynchronous circuits incorporating gate sizing, repeater

insertion and pipeline buffer insertion together [87]. In particular, we proposed a method-

ology for handling pipeline buffer insertion under the LR framework, and a fast look-up

table based repeater insertion approach to speed up the evaluation approach.

• An algorithm which is able to quickly find the maximum cycle ratio on an incrementally

changing directed cyclic graph. We proposed a distance bucket approach to speed up

the process of finding the longest paths on graph without positive cycle. A timing-driven

detailed placement approach is also proposed.
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1.3 Dissertation Organization

The rest of this thesis is organized as follows. Chapter 2 introduce our global placement

approach for asynchronous circuits. Chapter 3 extends our global placement approach to three

different circuit design styles: synchronous circuits, synchronous circuits with sequential opti-

mization techniques and asynchronous circuits. Chapter 4 introduce our detailed placement

approach which is able to handle the double-row height cells in our asynchronous standard

cell library. Chapter 5 introduce our gate sizing and Vth assignment approach for asynchronous

circuits. Chapter 6 extends our gate sizing approach to perform slack matching, gate sizing and

repeater insertion simultaneously for asynchronous circuits. Chapter 7 presents our incremen-

tal maximum cycle ratio algorithm which is essential for the timing analysis of asynchronous

circuits.
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CHAPTER 2. ASYNCHRONOUS CIRCUIT PLACEMENT USING

LAGRANGIAN RELAXATION

Recent asynchronous VLSI circuit placement approach tries to leverage synchronous place-

ment tools as much as possible by manual loop-breaking and creation of virtual clocks. However,

this approach produces an exponential number of explicit timing constraints which is beyond

the ability of synchronous placement tools to handle. Thus, synchronous placer can only pro-

duce suboptimal results. Also, it can be very costly in terms of runtime. This paper proposed

a new placement approach for asynchronous VLSI circuits. We formulated the asynchronous

timing-driven placement problem and transform this problem into a weighted wirelength min-

imization problem based on a Lagrangian relaxation framework. The problem can then be

efficiently solved using any standard wirelength-driven placement engine that can handle net

weights. We demonstrate our approach on QDI PCHB asynchronous circuit with a state-of-art

quadratic placer. The experimental results show that our algorithm can effectively improve

the asynchronous circuits performance at placement stage. In addition, the runtime of our

algorithm is shown to be more scalable to large-scale circuits compared with the loop-breaking

approach.

2.1 Introduction

With the continual diminishing of feature size, integrated circuit (IC) design is progressively

more difficult. Synchronous design is facing particularly severe challenges due to the increasing

variations in process parameters and demand in low power consumption. Asynchronous design

provides a promising solution to the emerging challenges in advanced technology. Its potential

advantages over synchronous design include robustness towards process-voltage-temperature
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(PVT) variations, lower power consumption, avoidance of the difficult problem of clock distri-

bution, higher operating speed, less emission of electromagnetic noise, lower stress on power

distribution network, improved security, and better composability and modularity [2] [9] [52].

However, even asynchronous design has all the potential advantages, synchronous circuits still

predominate. A main reason is that EDA tool support for asynchronous design is grossly

inadequate.

In current aggressive technologies, placement for asynchronous circuit becomes a more im-

portant issue, as wire delays are becoming more critical than gate delays. Most works on

the timing-driven placement of asynchronous circuits directly leverage synchronous placement

tools [6] [90] [78]. For synchronous circuit, the circuit performance is bounded by the most

critical path and synchronous timing-driven placer will minimize the maximum path delay be-

tween flip-flops. However, in the case of asynchronous circuit, the performance is bounded by

the most critical cycle [9]. This creates issues when applying synchronous placement tools for

asynchronous timing optimization, since the optimization objective is different and timing-loops

are not supported. In [6], a minimal set of cut-points is identified to break these timing loops.

Then the handshaking cycles of the design are explicitly expressed as a set of set max delay

timing constraints for each segment. The resulting number of constraints turns out to be far

greater than in a typical synchronous placement flow and exponential to the circuit size. For

large scale designs, it becomes impossible for placement engine to satisfy all these constraints

within a reasonable amount of runtime. Also, these timing constraints are too conservative to

achieve a good optimization result, as time borrowing is not allowed for segments along the

same cycle.

Another issue to leverage synchronous placement tool is to enforce the timing constraints

necessary for the functional correctness of asynchronous circuits. Instead of setup and hold time

constraints for typical synchronous design, certain asynchronous design style requires relative

timing constraints which constrains the relative delay between two paths [74]. Some other

design styles require minimum and maximum bounded delay values on gates and wires [76].

This difference of timing assumptions between asynchronous design and synchronous design

creates extra difficulties when applying synchronous placement tools to asynchronous design.
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Few works have been done for timing aware placement algorithms targeting at optimizing

critical cycles. In [34], sequential timing analysis based placement approach has been proposed

to optimize the cycle delay for synchronous design under the assumption that retiming and

clock skew scheduling can be applied. Unfortunately, this technique is practical only for the last

stages of physical design and only a small amount of useful skew is allowed. In [42], performance

and relative timing constraints for QDI circuits have been incorporated into a constructive

placer to handle asynchronous designs. However, given their framework of construction based

placement approach, this algorithm can easily be trapped into local minimum and produce

suboptimal results. Also, this approach will lead to high density placement hot spots which

can cause routability problems. In [35], a floorplan method for asynchronous circuits based on

simulated annealing and sequence-pair has been proposed. However, they still need to leverage

synchronous place-and-route tools at the placement stage.

In this paper, we proposed a new placement flow based on a Lagrangian relaxation frame-

work. We formulated the asynchronous timing-driven placement problem considering both

performance and timing constraints. Instead of adding explicit cycle constraints whose num-

bers can grow exponentially with circuit size, we incorporated the cycle metric calculation linear

program into our problem formulation and the number of constraints we have is polynomial

in circuit size. In addition, the special structure of the formulated timing-driven placement

problem allows us to simplify the Lagrangian dual problem using Karush-Kuhn-Tucker (KKT)

conditions and the original problem is transformed into a weighted wirelength minimization

problem which can be solved effectively with existing placement approaches. The general mod-

eling of performance and timing constraints also makes our approach applicable to a wide

variety of asynchronous design styles, including Micropipeline [76], QDI [47], GasP [75] and

Mousetraps [71] pipeline templates.

We explored our approach on quasi-delay-insensitive (QDI) Pre-Charged Half Buffer (PCHB)

asynchronous designs synthesized using the Proteus RTL flow [6]. The Lagrangian relaxation

frame work is incorporated into state-of-art quadratic placer POLAR [46]. We compared our

results after detailed placement and routing with both an industrial placement tool and the

Proteus placement flow.
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The rest of this paper organized as follows. Section II introduces timing issues faced by

asynchronous design. Section III elaborates our general Lagrangian relaxation framework.

Section IV proposed our asynchronous placement flow on QDI PCHB asynchronous design.

Section V shows the experimental results compared with other approaches. Finally, Section VI

concludes the paper.

2.2 Timing for Asynchronous Circuits

First we define some notations that we use in this paper. An asynchronous circuit can be

represented by a hypergraph G = (V,E). Let V =
{
v1, v2, . . . , v|V |

}
be the set of cells. Let

E =
{
e1, e2, . . . , e|E|

}
be the set of hyperedges. Let AT =

{
a1, a2, . . . , a|V |

}
be the arrival time

associated with each cell.

2.2.1 Performance for Asynchronous Circuits

Here we introduce a Petri net [64], which is a commonly used tool for modeling concurrent

systems. A Petri net consists of places, transitions, and arcs. Places in a Petri net can have one

or more tokens, or no token at all. The distribution of tokens over the places will represent an

initial marking of the system. Transitions in a Petri net can fire if all its input places contain at

least one token. When a transition fires, it consumes one token per input place and generates

one token per output place. Specifically, a Petri net is called marked graph if all places have

only one input and one output transition.

The performance of unconditional asynchronous circuits can be modeled using timed marked

graphs. For conditional asynchronous circuits, we treat them as unconditional and the circuit

performance can be guaranteed conservatively as proved in [53].

Figure 2.1: Asynchronous ALU.
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Figure 2.2: Marked graph representation for Asynchronous ALU.

As an example, an asynchronous ALU design with two operation modes, addition and

multiplication, is shown in Fig. 2.1. We use the Full Buffer Channel Net model proposed in

[8] to obtain timed marked graph. The extracted marked graph is shown in Fig. 2.2. Each cell

is modeled using a transition (t) and asynchronous channels between cells are modeled with

a pair of places (shown as circles), a forward place and a backward place, which are labeled

with forward and backward delays of the corresponding channel. Black dots inside the circle

denotes the initial marking of the marked graph.

For any marked graph, let Cp be the set of neighboring transition pairs which have a place

between them. The cycle time τ can be obtained by solving the following linear program [49].

Minimize τ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ Cp

where ai and aj are the arrival time associated with transitions ti and tj , which correspond to

nodes vi and vj in the graph. Dij is the delay associated with place p between transition ti

and tj , which corresponds to forward or backward path delay of an asynchronous channel. mij

is the number of tokens in the place p. mij = 0 if the corresponding place p does not contain

token, which is quite often.

2.2.2 Timing Constraints

Timing assumptions made for different logic implementation style have a direct influence

in the timing constraints necessary to ensure hazard-free operation of asynchronous circuits.

Except for delay-insensitive (DI) design [79] which are premised on the fact that they will

function correctly regardless of the delays on the gates and the wires, timing constraints for

other asynchronous designs fall into two categories [9].
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First is explicit timing constraints in the form of minimum and maximum bounded delay

values for gates and wires in the circuit. An example is the bounded-delay asynchronous circuits

[76].

Let Uij be the maximum bounded delay and Lij be the minimum bounded delay between

nodes vi and vj . Let Ce be the set of node pairs which we need to enforce explicit delay bounds.

The explicit timing constraints can be written as:

Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ce (2.1)

Second is relative timing constraints, referred to as relative timing [74], which dictate the

relative delay of two paths that stem from a common point of divergence. Examples design

styles that have relative timing constraints include the quasi-delay-insensitive (QDI) design

style, such as WCHB, PCHB and the Multi-Level Domino (MLD) template [9].

For a relative timing constraint from a node vk and forking into two nodes vi and vj

constraints can be written as:

|(ai − ak)− (aj − ak)| ≤ Iij ∀(i, j) ∈ Cr (2.2)

which bound the maximum difference in time that the signal arrives at the two end-points of

the fork. This type of constraint captures the notion of an isochronic fork [9], a common

type of constraint in quasi-delay-insensitive designs. Here Iij is the delay bound for isochronic

fork. Cr is the set of node pairs which have relative timing constraints.

2.3 Asynchronous Placement with Lagrangian Relaxation

Given an asynchronous circuit, we are interested in the minimum total wirelength and

cycletime achievable with respect to the timing constraints necessary to guarantee functional

correctness. In Section III-A, we first show how to formulate this problem as a constrained

optimization problem. Then, we apply Lagrangian relaxation in Section III-B which is a gen-

eral technique for converting constrained optimization problem into unconstrained problem.

In Section III-C, we explore the special structure of the primal problem which allows us to

extensively simplify the Lagrangian subproblem. In Section III-D, we show how to solve the
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simplified Lagrangian subproblem as weighted wirelength minimization problem. In Section

III-E, we describe how to solve Lagrangian dual problem using a direction finding approach.

2.3.1 Problem Formulation

We denote the x-coordinates of cells by a vector x =
(
x1, x2, · · · , x|V |

)
, and y-coordinates

by a vector y =
(
y1, y2, · · · , y|V |

)
. For pure wirelength-driven placement, the objective is to

minimize the sum of the half-perimeter bounding box (HPWL) for all hyperedge e:

HPWL(x,y) =
∑
e∈E

[max
i∈e

xi −min
i∈e

xi + max
i∈e

yi −min
i∈e

yi]

Then the problem of minimizing both total HPWL and cycletime subject to timing con-

straints (1), (2) in section II can be formulated directly as:

Minimize HPWL(x,y) + ατ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ Cp (2.3)

Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ce (2.4)

|(ai − ak)− (aj − ak)| ≤ Iij ∀(i, j) ∈ Cr (2.5)

where the constant α in the objective function can be chosen to adjust the tradeoff between

minimizing wirelength and cycletime.
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Note that Equations (4), (5) can be rewritten into the same form as:

(ai + Lij ≤ aj) ∧ (aj − Uij ≤ ai) (2.6)

(aj − Iij ≤ ai) ∧ (ai − Iij ≤ aj) (2.7)

To make equations in Section III-B, Section III-C more concise, we combine Equations (3),

(6), (7) and the primal problem can be rewritten as:

Minimize HPWL(x,y) + ατ

Subject to ai +Wij − m̃ijτ ≤ aj ∀(i, j)

where Wij = Lij or −Uij ∀(i, j) ∈ Ce, Wij = −Iij ∀(i, j) ∈ Cr and Wij = Dij ∀(i, j) ∈ Cp.

Similarly, m̃ij = mij ∀(i, j) ∈ Cp and m̃ij = 0 ∀(i, j) ∈ Ce or Cr.

2.3.2 Lagrangian Relaxation

We relax all the constraints following the Lagrangian relaxation procedure. Nonnegative

Lagrangian multiplier λij is introduced for each constraint. Let λ be a vector of all the Lagrange

multipliers.

Let L(x,y,a, τ) = HPWL(x,y) + ατ

+
∑
∀(i,j)

λij(ai +Wij − m̃ijτ − aj)

Then the Lagrangian subproblem, which gives a lower bound for the primal problem for any

λ ≥ 0 [69], can be formulated as:

LRS : Mimimize L(x,y,a, τ)

Let the function q(λ) be the optimal value of the problem LRS. We are interested in

finding the values for the Lagrangian multipliers λ to give the maximum lower bound, which

is labeled as the Lagrangian dual problem and defined as follows:

LDP : Maximize q(λ)

Subject to λ ≥ 0

Solving LDP will provide a solution to the primal problem.
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2.3.3 Simplification of LRS

Inspired by [14], we rearrange terms here and the Lagrangian function L(x,y,a, τ) can be

rewritten as:

L = HPWL(x,y) + (α−
∑
∀(i,j)

λijm̃ij)τ

+
∑
k∈V

(
∑
∀(k,j)

λkj −
∑
∀(i,k)

λik)ak

+
∑
∀(i,j)

λijWij

The KKT conditions imply ∂L/∂ai = 0 for 1 ≤ i ≤ |v| and ∂L/∂τ = 0 at the optimal

solution of the primal problem. Then the optimality conditions K on λ can be obtained as:

α =
∑
∀(i,j)

λijm̃ij

∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀k ∈ V

Apply the optimality conditions into LRS, we can obtain a simplified Lagrangian subprob-

lem LRS∗:

Minimize L∗(x,y) = HPWL(x,y) +
∑
∀(i,j)

λijWij

It can easily be seen that solving LRS is equivalent of solving LRS∗.

2.3.4 Solving LRS∗

Since it is impossible to get accurate timing without detailed placement and routing, as an

approximation, we take the wire delay as being proportional to the HPWL of the hyperedge e

associated with node i and j, which can be written as:

Wij = di +HPWLe · γe

where di is the intrinsic gate delay and HPWLe · γe is the total wire load delay. γe is a

constant value associated with each edge and depends on the driver cell, load cells and electrical

characterization for the wires.
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Note that for constraints (4) and (5), the corresponding Wij is a constant value. For

simplicity, we don’t write them here explicitly. Then LRS∗ can be written as:

Minimize L∗(x,y)

= HPWL(x,y) +
∑
∀(i,j)

λij(di +HPWLe · γe)

+ terms independent of x, y

= HPWL(x,y) +
∑
∀(i,j)

HPWLe · λijγe

+ terms independent of x, y

Here the objective function only contains x, y as variables. LRS∗ becomes a weighted wire-

length minimization problem for a set of hyperedges, which can be solved well by existing

standard synchronous placement engine with the ability to weight nets.

2.3.5 Solving LDP

Traditional approach of solving Lagrangian dual problem is to apply the subgradient opti-

mization method [69]. However, this approach requires projection after updating λ in order to

maintain λ within the dual feasible region. In addition, practical convergence of the subgradi-

ent optimization is difficult and usually requires a good choice of initial solution and step size.

Here we apply a direction finding approach inspired by [83] to solve LDP, which is shown to

have better convergence compared with the traditional approach. Combining LDP defined in

Section III-B with optimality condition K derived in Section III-C, we rewrite LDP here as:

LDP : Maximize q(λ)

Subject to λ ≥ 0,λ ∈ K

For any feasible λ, we want to find an improving feasible direction ∆λ and a step size β such

that:

q(λ+ β∆λ) > q(λ)
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Note that ∇L∗λij (x,y) = Wij ∀(i, j). Then an increasing feasible direction ∆λ can be found

by solving the following linear program D:

Maximize
∑
∀(i,j)

∆λijWij

Subject to λ ≥ 0,λ ∈ K

max(−u,−λij) ≤ ∆λij ≤ u

where u is a constraint we introduced to bound the objective function, similar to [83].

Our algorithm to solve LDP is shown in Algorithm 1. It starts from an initial dual feasible

λ, then the method iteratively improves q(λ) by finding an improving direction and performing

a line search. The algorithm terminates when change of q(λ) is small enough or the duality

gap HPWL(x,y) + ατ − q(λ) is less than Error bound.

Algorithm 1 Solve Lagrangian Dual Problem

Ensure: λ which maximizes LRS∗
1: n =: 1; /* step counter */
2: λ =: initial positive value satisfy optimality condition K;
3: Solve linear program D to obtain optimal increasing direction ∆λ;
4: Perform line search on q(λ). Then a step size β which improves function value q(λ+ β∆λ) > q(λ)

can be found. Terminate the algorithm if the change of q(λ) is small enough;
5: Moving one step further by updating λ = λ+ β∆λ;
6: n =: n+ 1;
7: Repeat Step 3-6 until

(HPWL(x,y) + ατ −Q(λ)) ≤ Error bound;

2.4 Asynchronous Placement Flow for QDI Pipeline Templates

2.4.1 Asynchronous Design with Pre-Charged Half Buffer (PCHB) Templates

PCHB is a QDI template developed at Caltech [47], which designed with dual-rail asyn-

chronous channels and 1-of-N handshaking protocol [9]. Fig. 2.3 shows a three stage PCHB

pipeline structure with control circuit (CTRL), C-elements (C) and domino logic (FU) for

computation.

Marked lines in Fig. 2.3 show an example of timing assumptions made by PCHB. In

particular, it requires the input to the domino block go low before a rising transition on the

control signal ‘en’ occurs. This timing assumption is a relaxed interpretation of the isochronic
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fork assumption [66] and can easily be met without special care. We ignore this timing

constraint at global placement stage and leave it to be checked after detailed placement and

routing, similar to [6] and [78].

Figure 2.3: PCHB pipeline template.

2.4.2 Asynchronous Placement Flow

Fig. 2.4 illustrates our placement flow for QDI PCHB pipeline templates. We use a state-

of-art quadratic placer POLAR [46] as the placement engine. Initially, pure wirelength-driven

placement is performed on the asynchronous circuit, as a good starting placement with mini-

mized wirelength is necessary in order to achieve better cycletime in later stage.

After initial placement, we calculate the total wirelength and initial cycletime to set param-

eter α = k ·HPWL(x,y)/τ . k is normally set to 1 in order to achieve a good balance between

total wirelength and cycletime. We first extract the performance constraints based on our

marked graph modeling of the original circuit. Then, a linear program similar to D is solved

using Gurobi [1] to obtain an initial non-negative λ satisfy K. Next, net weights as derived

in Section II-C are added into the hypergraph which is used to guide POLAR solving LRS∗.

At this point, we enter the timing optimization stage of our flow. We start the loop of solving

LDP by iteratively solving the direction finding problem with Gurobi and weighted wirelength

minimization problem with POLAR to find a direction and step size which increase the objec-

tive value q(λ), until we achieve a small duality gap or the improvement on the objective value

is tiny. The solution to LDP is a placement with optimized timing which will be the output of

our flow. Note that the constraints we have for PCHB will not introduce negative edge weights.

Thus, it can be handled well by quadratic placer POLAR. For other asynchronous design style

which has different timing constraints and negative weight edge exists, we need to choose a
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non-linear type placement engine to solve LRS∗. Finally, we export our design into Encounter

to perform legalization and routing.

Figure 2.4: QDI PCHB placement flow.

2.5 Experimental Results

The proposed approach is implemented using C++. All experiments were run on a Liunx

PC with 47GB of memory and Intel Core-i3 3.3GHz CPU.

We run our flow on two sets of benchmarks. First is a set of ISCAS89 benchmark circuits

which are converted to unconditional asynchronous circuits using Proteus’s legacy RTL design

flow [6]. In particular, flip-flops from ISCAS89 are mapped as token buffers and combinational

gates are mapped as logic cells in PCHB cell library. In addition, we developed several bench-

marks in RTL level and synthesized it using Proteus. For ALU and Accumulator design, we

choose different bit width for the datapath to create a set of benchmarks with different sizes.

We compared our flow against both Encounter and the Proteus placement flow. The die

size and I/O pin locations are set to be the same for all three flows. In our case, Encounter

is used as a pure wirelength-driven placer without any input timing constraints. For Proteus

flow, we disabled the gate resizing at its placement stage to avoid the changing of input netlists.
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Our experimental results are shown in Table 2.1. The size column shows the number of

cells in each design. The wirelength column shows the detailed routed wirelength reported

by Encounter. All the designs are shown to be routable. The cycletime column shows the

cycletime calculated using the linear program introduced in Section II-A for the final routed

design using our delay model.

We show significant improvement in cycletime compared with the non-timing driven En-

counter placement and Proteus placement flow. For all the benchmarks, we achieved an average

improvement in cycletime of 12% over the Proteus placement flow and 32% over the results

of non-timing driven placement by Encounter. The wirelength of our approach is 3% worse

compared with Encounter, which is expected considering the extensive timing optimization

that has been performed and 6% better than Proteus placement flow. In addition, our runtime

is also shown to be much more scalable in comparison with the Proteus approach.

2.6 Conclusion

In this paper, we have proposed a timing-driven placement approach targeting asynchronous

circuits. Our problem formulation only introduce polynomial number of performance con-

straints which is more efficient and effective than the approaches using loop-breaking tech-

niques or enforcing explicit cycle constraints. The flexibility of our Lagrangian relaxation

framework also makes our framework applicable to a wide range of asynchronous design styles.

In addition, we simplified the timing-driven placement problem into a weighted wirelength min-

imization problem which can be solved by standard placement algorithms with the ability to

handle net weights. We implemented a placement flow with a quadratic placer to demonstrate

our idea. The experimental results shows our approach can greatly improve the performance

for a given asynchronous circuits at the placement stage. The runtime and placement quality

is also shown to be much better than the previous state-of-the-art.
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CHAPTER 3. TIMING-DRIVEN PLACEMENT BY LAGRANGIAN

RELAXATION

In this work, we propose Lagrangian relaxation based algorithms to optimize both circuit

performance and total wirelength at the global placement stage. We introduce a general timing-

driven global placement problem formulation that is applicable to three different circuit design

styles: synchronous circuits, synchronous circuits with sequential optimization techniques and

asynchronous circuits. Lagrangian relaxation is applied to handle the timing constraints of the

formulated problem. Based on how the cell spreading constraints are handled, two different ap-

proaches are proposed: One approach handles the spreading constraints inside the Lagrangian

relaxation framework and transforms the timing-driven placement problem into a series of

weighted wirelength minimization problems, which can be solved by directly leveraging exist-

ing wirelength-driven placers. The other approach handles the spreading constraints outside the

Lagrangian relaxation framework. Thus, only timing constrains need to be taken care of in the

Lagrangian relaxation framework and better solutions can be expected. In both approaches, we

simplified the Lagrangian relaxation subproblem using Karush-Kuhn-Tucker conditions. Our

algorithms are implemented based on a state-of-the-art wirelength-dirven quadratic placer. The

experiments demonstrate that the proposed algorithms are able to achieve significant improve-

ments on circuit performance compared with a commercial wirelength-driven placement flow

and a commercial asynchronous timing-driven placement flow.

3.1 Introduction

Placement is a critical step in VLSI design flow, as the placement quality and optimization

metrics can greatly affect the performance, routability, heat distribution and power consump-
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tion of a design [85]. In advanced technology, the importance of placement continues to grow,

since it determines the interconnect delay, which has been a dominating factor of the circuit

delay.

Traditional wirelength-driven placement algorithms only consider minimizing the total chip

wirelength and do not take into account circuit timing during the optimization process. As a

result, the wirelength-driven placement algorithms are no longer sufficient to close timing at

modern technology nodes, which often have stricter timing constraints. Therefore, the quests

for timing-driven placement (TDP) algorithms start to receive closer attention.

Timing-driven placement problem has been extensively studied for decades. One category

of TDP algorithms optimizes the circuit timing by capturing the timing criticality of each net

through net weighting (e.g., [12] [24]) or net constraints (e.g.,[28]). These algorithms are often

referred to as net based algorithms. However, net based approaches only estimate the circuit

timing locally and do not have a global view on the entire timing paths. Another category

of TDP algorithms directly work on a set of critical timing paths and ensure all considered

timing paths meet the constraints. This category is often referred to as path based algorithms

(e.g., [36]). To avoid explicitly considering all the timing paths, the number of which can be

exponential to the circuit size, timing graph based approaches embed the timing graph into the

formulation of timing-driven placement problem, and all topological timing paths can then be

implicitly considered [62].

Depending on the specific circuit design style, the corresponding TDP problem can target

at optimizing either the most critical path between registers (as in synchronous circuits) or the

most critical cycle (as in asynchronous circuits [88][37] or synchronous circuits with sequential

optimization techniques [34]). In addition, timing-driven placement can be performed at the

global placement stage, detailed placement stage, or both. Normally, at the global placement

stage, cells are placed to improve circuit performance based on a rough timing estimation, with

a small amount of cell overlapping allowed. At the detailed placement stage, cells are moved to

legal locations either respecting the global placement results [34] or applying certain techniques

to further improve the timing of the circuit [68].



www.manaraa.com

25

Lagrangian relaxation (LR) is a popular approach people used for timing-driven placement

due to several important reasons: First, it relaxes the complex timing constraints in the for-

mulated problem and results in a LR subproblem which is much easier to solve [69]. Second,

the special circuit structure allows Karush-Kuhn-Tucker (KKT) conditions to be applied to

further simplify the LR subproblem to get rid of its arrival time and cycle time variables [14].

Finally, Lagrangian relaxation has great flexibility and is capable of handling various objectives

and complex design constraints. LR-based algorithms have shown to be successful in hand-

ing timing constraints in many previous works. In [73][31], Lagrangian relaxation is combined

with the wirelength-driven placer GORDIAN [41] to solve the timing-driven placement problem

for synchronous circuits. The relaxed LR-subproblem is either solved as a quadratic program

[73] or through the resistance network approach [31]. In [34], Lagrangian relaxation is used

as a refinement step after global placement, in order to improve the circuit performance for

synchronous circuits with sequential optimization techniques.

Apart from the complex timing constraints of the timing-driven placement problem, we

also need to consider its cell spreading constraints, which can be even more difficult to handle.

One reason is that these constraints are often non-convex and not differentiable. Thus, it is

not straightforward to solve them mathematically. Another reason is that modern placement

techniques often develop some heuristic algorithms to spread out the cells and do not have

an exact formulation of the cell spreading constraints [39][46]. This makes it unclear how to

incorporate these techniques for the timing-driven placement problem.

In this paper, we apply Lagrangian relaxation to handle the timing constraints, while also

explore different approaches to incorporate the cell spreading techniques with the LR frame-

work. In particular, we formulate a general timing-driven global placement problem which

is applicable to synchronous circuits, synchronous circuits with sequential optimization tech-

niques, and asynchronous circuits. We propose two different approaches for handling the cell

spreading constraints: One approach handles the spreading constraints inside the LR frame-

work and the LR subproblem becomes a weighted wirelength minimization problem, which

can be solved effectively using existing wirelength-driven placers with the ability to handle net

weights. The other approach spreads the cells outside the LR framework and the resulting LR
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subproblem becomes an unconstrained optimization problem which can be solved optimally

using standard mathematical techniques.

The proposed approaches are implemented based on the state-of-art quadratic placer PO-

LAR [46]. We evaluated both of our approaches on quasi-delay-insensitive (QDI) Pre-Charged

Half Buffer (PCHB) asynchronous designs synthesized using the Proteus asynchronous syn-

thesis flow [6]. The experimental results of both approaches are compared with a commercial

wirelength-driven placement flow and a commercial timing-driven placement flow.

The main contributions of this paper are as follows:

• A general problem formulation for the timing-driven placement problem is proposed which

can be applied to a large variety of design styles.

• Two different approaches of applying Lagrangian relaxation to the formulated problem

are presented.

• For both approaches, better computational efficiency is achieved by simplifying the LR

subproblem using the KKT conditions.

• An effective approach to handle timing-driven placement at the detailed placement stage

is proposed.

• Promising experimental results are presented.

The rest of this paper is organized as follows. Section II presents the problem formulations

for various design styles. Section III elaborates two different approaches we used to apply

Lagrangian relaxation framework to the formulated timing-driven placement problem. Section

IV presents the detailed implementation of the proposed approaches. Section V shows our

experimental results compared with other placement approaches. Finally, Section VI concludes

the paper.

3.2 Problem Formulations

In Section II-A, we will first discuss the problem formulation for the pure wirelength-

driven placement problem. Next, in Section II-B, we introduce three different design styles:
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synchronous circuits, synchronous circuits with sequential optimization techniques, and asyn-

chronous circuits. Their corresponding formulations for the timing-driven placement problem

will also be presented. Finally, in Section II-C, we summarize all the design styles and propose

a general problem formulation covering all of them.

A circuit can be represented by a hypergraph G = (V,E) where V =
{
v1, v2, . . . , v|V |

}
corresponds to the set of cells, and E =

{
e1, e2, . . . , e|E|

}
corresponds to the set of nets. In

addition, we use vector x =
(
x1, x2, · · · , x|V |

)
to denote the x-coordinates of the cells and vector

y =
(
y1, y2, · · · , y|V |

)
to denote the y-coordinates of the cells.

The wirelength of a hyperedge e depends on the locations of the cells associated to it. Thus,

we use WLe(x,y) to denote the wirelength of a hyperedge e. The definition of this wirelength

function is ignored at this point to make our problem formulation general. In practice, the

wirelength function can be modeled as HPWL, quadratic, Log-Sum-Exp function, etc. [85].

Some notations used in this paper are shown in Table I.

Table I. The key notations used in this paper.

WDP wirelength-driven placement

T DP timing-driven placement

ST DP synchronous timing-driven placement

ST DPS synchronous timing-driven placement

with sequential optimization techniques

AT DP asynchronous timing-driven placement

GT DP general timing-driven placement

LRS Lagrangian relaxation subproblem

LRS-S simplified Lagrangian relaxation subproblem

LDP Lagrangian dual problem

ai arrival time variable at node i

Dij delay value associated with edge (i, j)

λij Lagrange multiplier associated with edge (i, j)

τ cycletime variable

q(λ) optimal value of LRS for a given vector λ

Lλ(x,y,a, τ) objective function of LRS
Lλ(x,y) objective function of LRS-S
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3.2.1 Wirelength-driven Placement Problem (WDP)

The wirelength-driven global placement tries to minimize the total chip wirelength by

assigning cells to locations on the chip, while keeping the cells spread out. Therefore, the

wirelength-driven placement problem can be formulated as:

WDP : Minimize
∑
e∈E

WLe(x,y)

Subject to cell spreading constraints

Here, we also skip the details about the cell spreading constraints to make our problem for-

mulation general. Various techniques can be practically used to implement the cell spreading

constraints, such as the center-of-gravity (COG) constraints [41], spreading forces [24], density

penalty functions [56], etc.

3.2.2 Timing-driven Placement Problems

To further capture the timing information of the circuit, we introduce a timing graph

G′ = (V,E′), where E′ denotes the set of timing edges. In particular, we use VI to denote the

set of vertices representing the starting points of timing paths, i.e., the output pins of registers

or the primary inputs. Similarly, we use VO to denote the set of vertices representing the timing

path end points, which are the input pins of registers or the primary outputs. In addition, let

AT =
{
a1, a2, . . . , a|V |

}
be the set of arrival time variables associated with each node. Let τ

denotes the minimum cycle time to ensure hazard-free operation of the circuit. Also, we denote

the delay associated with the edge between node vi and vj in the timing graph as Dij , whose

value depends on the interconnection between vi and vj and hence depends on the placement.

3.2.2.1 Synchronous timing-driven placement (ST DP)

The minimum cycle time for synchronous circuits is bounded by the delay of its longest

timing path. However, the total number of timing paths is exponential to the circuit size.

Therefore, instead of explicitly considering all timing paths, we capture the circuit timing
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using the set of worst case arrival times, which can be calculated by propagating the largest

arrival time at each node:

ai +Dij ≤ aj ∀(i, j) ∈ E′

Then, the synchronous timing-driven placement problem, which simultaneously minimizes

the total wirelength and cycle time can be formulated as:

ST DP : Minimize
∑
e∈E

WLe(x,y) + ατ

Subject to ai +Dij ≤ aj ∀(i, j) ∈ E′ (3.1)

ak ≤ τ ∀k ∈ VO (3.2)

ak ≥Wk ∀k ∈ VI (3.3)

cell spreading constraints

Here, α is a constant value which we can use to adjust the effort between optimizing wirelength

and cycle time. Wk denotes the constant delay value that signal arrives at the primary inputs or

the output of registers. Please note that we ignore the hold time violations in the formulation of

ST DP, as designers normally only consider the longest timing paths at the global placement

stage. The shortest paths causing hold time violations are fixed at a later stage, i.e., after

detailed placement and routing.

3.2.2.2 Synchronous timing-driven placement with sequential optimization tech-

niques (ST DPS)

Retiming [44] [45] and clock skew scheduling [25] are two commonly used sequential opti-

mization methods. Retiming improves the circuit performance through changing the structural

location of registers. Instead, clock skew scheduling preserves the circuit structure, while in-

tentionally introduces skews to registers to improve the performance of a circuit.

Let c denote a timing loop composed by a set of timing path segments. The basic idea for

both of the above two sequential optimization methods is to perform a coarse balancing on the

timing budgets of the path segments along the timing loop.
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The optimization potential of these methods is bounded by the maximum mean delay over

all timing loops:

τ ≥ max
c⊂G′

{ ∑
(i,j)∈cDij

# of registers in c

}

Instead of enumerating all the timing loops whose number is exponential to circuit size, we

can simply obtain the cycle time by solving the following linear program [49]:

Minimize τ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ E′

where mij = 1 if the corresponding edge is a fanout edge of node v ∈ VI , and mij = 0 otherwise.

Accordingly, to increase the optimization potential of such sequential methods, we should

target improving the maximum mean cycle delay during the placement stage. Thus, the syn-

chronous timing-driven placement problem with sequential optimization techniques is formu-

lated as:

ST DPS : Minimize
∑
e∈E

WLe(x,y) + ατ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ E′

cell spreading constraints

3.2.2.3 Asynchronous timing-driven placement (AT DP)

Instead of governing the circuit using global clock signals, an asynchronous circuit only

synchronizes neighboring stages through the handshaking signals [9]. Similar to synchronous

circuits with sequential optimization techniques, the performance of asynchronous circuits is

also bounded by the maximum mean cycle delay, while the difference is that the average-case

performance for asynchronous circuits is achieved naturally without needing extra optimization

techniques.

Depending on the timing assumptions made by the specific logic implementation style,

different types of timing constraints need to be satisfied for asynchronous circuits. Except

for delay-insensitive (DI) designs [79] which are premised on the fact that they will function
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correctly regardless of the delays of the gates and the wires, timing constraints for other asyn-

chronous designs fall into two categories [9].

First are explicit timing constraints in the form of minimum and maximum bounded delay

values for gates and wires in the circuit. An example is the bounded-delay asynchronous circuits

in [76].

Let Uij be the maximum bounded delay and Lij be the minimum bounded delay between

nodes vi and vj . Let Ee be the set of node pairs which we need to enforce explicit delay bounds.

The explicit timing constraints can be written as:

Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ee (3.4)

Second are relative timing constraints, referred to as relative timing [74], which dictate

the relative delay of two paths that stem from a common point of divergence. Example design

styles that have relative timing constraints include the quasi-delay-insensitive (QDI) design

style, such as WCHB, PCHB and the Multi-Level Domino (MLD) template [9].

For a relative timing constraint from a node vk and forking into two nodes vi and vj ,

constraints can be written as:

|(ai − ak)− (aj − ak)| ≤ Iij ∀(i, j) ∈ Er (3.5)

This bounds the maximum difference in time that the signals arrive at the two end-points of

the fork. This type of constraint captures the notion of an isochronic fork [9], a common

type of constraint in quasi-delay-insensitive designs. Here Iij is the delay bound for isochronic

fork. Er is the set of node pairs which have relative timing constraints.

Combining everything together, the asynchronous timing-driven placement problem, which

minimizes both total wirelength and cycle time subject to timing constraints (4), (5) can be

formulated directly as:
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AT DP :

Minimize
∑
e∈E

WLe(x,y) + ατ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ E′ (3.6)

Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ee (3.7)

|(ai − ak)− (aj − ak)| ≤ Iij

∀(i, j) ∈ Er (3.8)

cell spreading constraints

where mij = 1 if the corresponding edge is a fanout edge of a token buffer, and mij = 0

otherwise.

3.2.3 A General Timing-driven Placement Problem (GT DP)

In this section, we show that all the three different types of problems we presented in Sec.

II-B can be generalized to the timing-driven placement problem shown as follows:

GT DP : Minimize
∑
e∈E

WLe(x,y) + ατ

Subject to ai + D̂ij − m̂ijτ ≤ aj ∀(i, j) (3.9)

cell spreading constraints

Here, D̂ij captures the wire delay after we combine everything together. For ST DP, m̂ij is

always equal to 0. For ST DPS or AT DP, m̂ij = 1 when the corresponding edge is a fanout

edge of a register or a token buffer, and m̂ij = 0 otherwise.

It is obvious that ST DPS is directly equivalent to the formulation of GT DP. Next, we

show how ST DP and AT DP can also be reduced to this form.
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3.2.3.1 Transform ST DP to GT DP

We add two new nodes into the timing graph: vs and vt and let their corresponding arrival

times to be as and at. In addition, we add the set of edges (s, vi) ∀vi ∈ VI and (vj , t) ∀vj ∈ VO

into the timing graph, with the edge delay Dsvi = Wi and Dvjt = 0. Finally, we add edge

(vt, vs) into the timing graph with Dvtvs = −τ . The new timing graph after this modification

is shown in Fig. 6.1.

Figure 3.1: Modified timing graph for ST DP.

After this graph transformation, timing constraints (2) and (3) can be rewritten as follows:

as +Wi ≤ ai ∀i ∈ VO (3.10)

aj + 0 ≤ at ∀j ∈ VI (3.11)

at − τ ≤ as (3.12)

The new constraints (10) (11) (12) can easily fit into the constraints (9) of GT DP. Then,

ST DP can be transformed to GT DP by combining constraints (1) (10) (11) (12) into con-

straints (9).

3.2.3.2 Transform AT DP to GT DP

We can rewrite the timing constraints in Equations (7) and (8) into the same form as

Equation (9) as follows:

(ai + Lij ≤ aj) ∧ (aj − Uij ≤ ai) (3.13)

(aj − Iij ≤ ai) ∧ (ai − Iij ≤ aj) (3.14)

Then, combining Equation (6) with the reformulated Equations (13) and (14), we can easily

transform AT DP to GT DP.
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3.3 Our Proposed Approaches on Solving GT DP

It is difficult to directly solve GT DP, due to its complex timing constraints (9) and cell

spreading constraints. In this section, we discuss how we handle the GT DP problem and pro-

pose two different approaches which can solve GT DP effectively. For both approaches, we use

Lagrangian relaxation to relax the timing constraints of GT DP, while the difference is how we

handle the spreading constraints. In particular, one approach, as we will present in Section

III-A, handles the spreading constraints inside the LR framework during the LR subproblem.

We refer this approach as the spreading-inside approach. The other approach, which we will

present in Section III-B, handles the cell spreading outside the Lagrangian relaxation frame-

work, while only takes care of the timing constraints within the LR framework. We refer this

approach as the spreading-outside approach.

3.3.1 Spreading-inside Approach

The spreading-inside approach extends one of our previous works in [88]. An overview of

the spreading-inside approach is shown in Fig. 6.2(a). To make things clear, we highlighted

the cell spreading step, which is inside the LR framework denoted as the red dotted box.

In the beginning, we relax all the timing constraints of GT DP and initialize a vector of λ

satisfying the KKT conditions. The relaxed LR subproblem is denoted as LRS, which still

contains the spreading constraints. Next, at each iteration, instead of directly solving LRS,

we explore the special structure of GT DP and solve an equvalent yet simpler version LRS-S

of the subproblem. In particular, LRS-S is a weighted wirelength minimization problem that

can be solved by a standard wirelength-driven placer. Typically, the wirelength-driven placer

incorporates the spreading constraints into the objective function of LRS-S and solve it as

an unconstrained optimization problem. After the LRS-S is solved, we update the vector of

λ using any standard method. The Lagrangian relaxation loop terminates when there is no

improvement in the objective function or the runtime limit is exceeded.
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(a) (b)

Figure 3.2: (a) The spreading-inside approach. (b) The spreading-outside approach.

3.3.1.1 Lagrangian Relaxation Subproblem (LRS)

We relax the timing constraints of GT DP following the Lagrangian relaxation procedure

and introduce a nonnegative Lagrange multiplier λij for each timing constraint. Let λ be a

vector of all the Lagrange multipliers.

Let Lλ(x,y,a, τ) =
∑
e∈E

WLe(x,y) + ατ

+
∑
∀(i,j)

λij(ai + D̂ij − m̂ijτ − aj)

Then the LR subproblem, which gives a lower bound for GT DP for any λ ≥ 0 [69], can be

formulated as:

LRS : Mimimize Lλ(x,y,a, τ)

Subject to cell spreading constraints
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3.3.1.2 Simplified LR Subproblem (LRS-S)

Inspired by [14], we rearrange the terms here and the Lagrangian function L(x,y,a, τ) can

be rewritten as:

L =
∑
e∈E

WLe(x,y) + (α−
∑
∀(i,j)

λijm̂ij)τ

+
∑
k∈V

(
∑
∀(k,j)

λkj −
∑
∀(i,k)

λik)ak

+
∑
∀(i,j)

λijD̂ij

The KKT conditions imply ∂L/∂ai = 0 for 1 ≤ i ≤ |V | and ∂L/∂τ = 0 at the optimal

solution of the primal problem. Then the optimality conditions K on λ can be obtained as:

α =
∑
∀(i,j)

λijm̂ij

∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀k ∈ V

Apply the optimality conditions into LRS, we can obtain a simplified Lagrangian relaxation

subproblem LRS-S:

LRS-S :

Minimize Lλ(x,y) =
∑
e∈E

WLe(x,y) +
∑
∀(i,j)

λijD̂ij

Subject to cell spreading constraints

It can be shown that solving LRS is equivalent to solving LRS-S.

3.3.1.3 Lagrangian Dual Problem (LDP)

Let the function q(λ) be the optimal value of the problem LRS. We are interested in

finding the values for the Lagrange multipliers λ to give the maximum lower bound of GT DP.

This problem is called the Lagrangian dual problem and is defined as follows. Solving LDP

will provide a solution to the primal problem.

LDP : Maximize q(λ)

Subject to the optimality conditions K on λ
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3.3.1.4 Solving LRS-S

The detailed timing model is irrelevant to our problem formulation and transformation

presented in the previous sections, but it is required when we start to discuss how to solve

these problems. Therefore, in this subsection, we first present the timing model used in this

paper.

Since detailed placement and routing are not performed yet, it will be wasteful and time

consuming to use an accurate delay model during the global placement stage. Thus, as an

approximation, we use a linear delay model which sets the wire delay D̂ij to be proportional

to the wirelength of the hyperedge e associated with nodes i and j:

D̂ij = di +WLe(x,y) · γe

where di is the intrinsic gate delay and WLe(x,y) · γe is the total wire load delay. γe is a

constant value associated with each edge and depends on the driver cell, load cells and electrical

characterization for the wires.

Based on the linear delay model proposed above, LRS-S can be written as:

Minimize Lλ(x,y)

=
∑
e∈E

WLe(x,y) +
∑
∀(i,j)

λij(di +WLe(x,y) · γe)

+ terms independent of x, y

=
∑
e∈E

WLe(x,y) +
∑
∀(i,j)

WLe(x,y) · λijγe

+ terms independent of x, y

Subject to cell spreading constraints

The new objective function only contains x, y as variables. Therefore, LRS-S becomes a

weighted wirelength minimization problem for a set of hyperedges, which can be solved well by

existing wirelength-driven placement engine with the ability to handle net weights.
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3.3.1.5 Solving LDP

In general, LDP can be solved by solving a sequence of LRS-S. Many previous works use

or modify the subgradient optimization method to solve LDP (e.g., [14][73]). The basic idea

of the subgradient optimization method is straightforward. At each iteration, we first update

λ based on the criticality of all timing edges. Then, based on the updated λ, we solve LRS-S

again to generate a new placement. Besides the subgradient optimization method, we can also

use the direction finding approach [83], which has been shown to have better convergence in

practice.

3.3.2 Spreading-outside Approach

The benefit of the spreading-inside approach is that one can leverage an existing wirelength-

driven placer as a black box to solve GT DP without any modification. However, cell spreading

constraints are non-convex by nature. Besides, they are usually modeled by non-continuous and

non-differentiable functions in modern placers [39][46]. Thus, this approach cannot guarantee

that an optimal solution of the LDP is also optimal for the primal problem. To avoid this issue,

we propose another approach to solve GT DP, which we referred to as the spreading-outside

approach.

An overview of the spreading-outside approach is shown in Fig. 6.2(b). As implied by

the name, we handle the cell spreading constraints outside the LR framework. In the begin-

ning, similar to typical wirelength-driven placement algorithms, we convert the cell spreading

constraints into a cost which is incorporated into the objective function of the placement prob-

lem. Different from wirelength-driven placement, the resulting problem still has the timing

constraints instead of being unconstrained. Here, we leverage the LR framework to solve this

problem, since LR has shown to be very effective in handling the timing constraints. After the

LR loop converges, we will update and convert the cell spreading constraints again if needed.

We neglect the derivation of the LR subproblem and Lagrangian dual problem for the

spreading-outside approach, as it is similar to what we have presented in Section III-A, except

we do not have the cell spreading constraints this time. In particular, for this approach, the
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LRS-S will just be an unconstrained optimization problem and can be easily solved using any

standard methods.

By tackling the complex and non-differentiable cell spreading constraints outside the LR

framework, LR only needs to handle a problem with timing constraints, which are converted

into terms linear to wirelength in the objective function of LRS-S. Thus, better solutions can

be expected at the LR step. In particular, if wirelength is modeled as convex function and the

spreading constraints are converted into convex functions, the problem to be solved by LR is

a convex optimization problem. Then, the strong duality will hold and this convex problem

can be solved optimally using the LR framework. The disadvantage of the spreading-outside

approach is that existing weighted wirelength minimization placers will no longer be directly

applicable. Instead, one needs to implement ones own cell spreading step and detach the cell

spreading part from the wirelength-driven placer in order to use it.

3.3.3 Comparing our approaches with previous Lagrangian relaxation based T DP

algorithms

In this subsection, we discuss in details about the differences between our approaches and

several previous works.

In [73], the proposed LR framework relaxes the cell spreading constraints together with the

timing constraints. However, this framework only works for placers with explicit modeling of

spreading constraints, i.e., GORDIAN with center-of-gravity constraints [41]. For some state-

of-the-art placers, this framework might not work, since the spreading constraints are often

handled implicitly using heuristic algorithms [39][46]. In [31], the spreading constrains are

not relaxed, while the path based approach makes the proposed framework not applicable for

large-scale circuits. In [34], Lagrangian relaxation is only used as a refinement step after global

placement, and the COG based cell spreading constraints are not updated. Therefore, the

effectiveness of the proposed approach is greatly limited. In addition, all previous works did

not simplify the LR subproblems through exploring the special structure of the circuit graph.

Thus, extra effort is required to calculate the cycle time and arrival time variables.
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In addition, more iterations are required to search for the optimal λ in LDP as λ is not

limited by the optimality conditions K.

Different from previous works, both the spreading-inside approach and spreading-outside

approach proposed by us simplify the LRS using KKT conditions based on the special structure

of the circuit. In addition, our approaches do not relax the cell spreading constraints by LR.

Thus they are more compatible with various type of placement techniques, especially for modern

placers with implicit modeling of cell spreading constraints. Finally, our approaches can be used

to optimize either the critical paths or the critical cycles of the circuit, and hence are suitable

for different circuit design styles.

3.4 Detailed Implementation

In this section, we talk about the detailed implementation of the timing-driven placement

approaches proposed in Section III. In particular, our TDP tool, which is referred to as TD-

POLAR here, incorporates the proposed timing-driven placement approaches with the state-of-

the-art quadratic placer POLAR [46]. In Section IV-A, we first discuss the quadratic placement

and rough legalization techniques which are the core techniques used in the POLAR algorithm.

Next, in Section IV-B, we will discuss how we leverage POLAR to solve the GT DP problem

using the proposed approaches.

3.4.1 POLAR: a wirelength-driven placer based on quadratic and rough legaliza-

tion techniques

3.4.1.1 Quadratic Placement

Assuming all the nets e ∈ E are two pin nets. The wirelength for a particular net e can

be modeled using the HPWL, which is given by the Manhattan distance between the two cells

connected by e. Then, the total wirelength can be calculated by the total sum of HPWL for

all the nets:

HPWL(x,y) =
∑
e∈E

[max
i∈e

xi −min
i∈e

xi + max
i∈e

yi −min
i∈e

yi]
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The function HPWL(x,y) is convex, but it is not differentiable. To make the optimization

easier, the quadratic technique approximates the Manhattan distance of the two pin net by

the squared Euclidean distance, also known as quadratic wirelength. Let Qx and Qy be the

connection matrices. The objective of the wirelength-driven placement can be defined as:

Minimize φ =
1

2
xTQxx + cTxx +

1

2
yTQyy + cTy y + const

It can be proved that both Qx and Qy are symmetric positive definite matrices. Thus, φ is

convex and differentiable, and the minimum solution of φ can be found by setting its derivatives

to 0 and solving the resulting system of linear equations:

Qxx + cx +Qyy + cy = 0 (3.15)

3.4.1.2 Rough Legalization

If we consider minimizing φ alone, the cells will not be spread out and the placement

solution will not be legalizable. Therefore, extra techniques are required to avoid excessive cell

overlapping.

POLAR adopts the rough legalization (RL) [39] approach to reduce the cell overlapping.

At each placement iteration, RL quickly spreads out the cells and generates an almost legal

placement, as shown in Fig. 6.3(b). The roughly legalized placement is used to generate the

spreading forces, which are incorporated into the objective function of the wirelength-driven

placement problem and guide the quadratic placement on the next iteration, as shown in Fig.

6.3(c).

(a) (b) (c)

Figure 3.3: (a) Cell overlaps after quadratic placement. (b) An almost legal placement obtained
by rough legalization. (c) Use of the roughly legal placement to guide the spreading force
generation.



www.manaraa.com

42

3.4.2 TD-POLAR: a general timing-driven placement tool

For both the spreading-inside and the spreading-outside approaches, we use the direction

finding approach inspired by [83] to solve LDP. We are not using the subgradient optimization

method as it requires a projection of λ unto the optimality conditions K after each iteration to

maintain λ within the feasible region of LDP. For ST DP problem, projection can be done by

simply traversing the circuit in topological order since the corresponding graph of the circuit

is a directed acyclic graph. For ST DPS or AT DP, it will not be easy to redistribute λ since

the corresponding circuit structure contains loops.

In particular, the direction finding approach wants to find an improving feasible direction

∆λ and a step size β such that at each step we have:

q(λ+ β∆λ) > q(λ)

The improving feasible direction ∆λ can be found by solving the following linear program:

DF : Maximize
∑
∀(i,j)

∆λijD̂ij

Subject to λ ≥ 0, λ ∈ K

max(−u,−λij) ≤ ∆λij ≤ u

where u is used to bound the objective function from going to infinity, similar to [83].

3.4.2.1 Implementation of the spreading-inside approach

It is straightforward to incorporate POLAR with our timing-driven placement flow using

the spreading-inside approach. Since the LRS-S is a weighted wirelength optimization problem

with spreading constraints, we can directly call POLAR to solve it. To capture the timing of

the circuit, we add an extra pseudo two-pin net for each timing edge to the circuit. After the

λ update step, the weights of the added two-pin nets should be updated accordingly, while the

weights of original nets are kept the same.
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3.4.2.2 Implementation of the spreading-outside approach

The implementation of the spreading-outside approach requires a tighter integration with

the placement engine. We split POLAR into the quadratic placement step, which we have

presented in Section IV-A 1), and the rough legalization step, which is done by a heuristic

algorithm. Then, for the spreading-outside approach as shown in Fig. 6.2(b), the step of solving

the unconstrained LRS-S will be similar to the quadratic placement step of POLAR, except

now there are weights associated with nets given by the Lagrange multipliers. In addition, the

step of converting spreading constraints into the cost function will be replaced by the rough

legalization step of POLAR. Therefore, for the spreading-outside approach, we first perform the

rough legalization to generate the spreading forces for the current placement. The spreading

forces are then incorporated into the objective function of GT DP to guide the placement

process in the quadratic placement step. Next, we apply Lagrangian relaxation framework

on the quadratic placement step to handle the timing constraints of GT DP. The iteration

continues until there is no improvement in the objective function or we exceed the runtime

limit.

3.4.3 Timing-driven Detailed Placement

Since traditional detailed placement algorithms only target reducing the total chip wire-

length, timing degradation might happen if we directly use them to optimize the global place-

ment results generated by TD-POLAR. In order to minimize the disturbance on circuit timing,

we developed a timing-driven detailed placement step to further optimize the global placement

results and also help generating a legalized placement. In particular, we leveraged the existing

wirelength-driven detailed placement engine FastDP [63] and applied net weights into its cost

function. The pseudo nets to capture timing at global placement are kept. The net weights

we used for the pseudo nets are the same as those at the final round of the global placement

stage. Thus, it reflects the timing criticality for each net. By doing this, FastDP is able to

respect the timing criticality at the global placement stage during its optimization process and

the disturbance on timing is greatly reduced.
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3.5 Experiments

The proposed approach is implemented using C++. All experiments were run on a Liunx

PC with 47GB of memory and Intel Core-i3 3.3GHz CPU.

We demonstrate our approaches using asynchronous circuits since it is the most general

circuit design style among the three design styles which we have introduced in Section II. In

particular, the asynchronous circuits we used are based on the PCHB template [47], which is a

QDI template designed with dual-rail asynchronous channels and 1-of-N handshaking protocol

[9]. Fig. 6.4 shows a three-stage PCHB pipeline structure with control circuit (CTRL), C-

element (C) and domino logic (LOGIC) for computation.

Marked lines in Fig. 6.4 show an example of timing assumptions made by PCHB. It requires

the input to the domino block go low before a rising transition on the control signal ‘en’ occurs.

This timing assumption is a relaxed interpretation of the isochronic fork assumption [66] and

can easily be met without special care. We ignore this timing constraint at global placement

stage and leave it to be checked after detailed placement and routing, similar to [6] and [78].

Figure 3.4: PCHB pipeline template.

We run TD-POLAR on two sets of benchmarks. First is a set of ISCAS89 benchmark

circuits which are converted to unconditional asynchronous circuits using the front-end synthesis

flow of Proteus [6]. In particular, flip-flops from ISCAS89 are mapped to token buffers and

combinational gates are mapped to logic cells in PCHB cell library. The second set consists of

several benchmarks synthesized from RTL to netlist using Proteus.
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For ALU and Accumulator (ACC) design, we choose different bit width for the datapath

to create a set of benchmarks with different number of cells.

The statistics of our benchmark circuits are shown in Table 6.2. The column “# of vertices”

shows the total number of cells in each design. The column “# of edges” shows the total number

of edges, which includes the original nets of the circuit and the added two-pin timing edges. An

estimation of the total number of variables for the corresponding GT DP problem is reported

in column “# of vars”.

Table 3.2: Statistics of the Circuits

Design # of vertices # of edges # of vars

s444 256 2719 8730

s510 519 5535 17676

s526 307 3366 10792

s526a 297 3284 10520

s641 636 5346 17328

s713 584 4904 15866

s820 681 6952 22268

s832 706 7327 23448

s838 707 7300 23466

s953 931 9805 31422

s1488 1314 15000 47950

s1423 1119 13010 41592

s9234 2108 22118 71058

s13207 5658 56164 181288

s38417 15447 182865 584402

ALU4 413 4239 13666

ALU8 916 10140 32550

ACC32 1187 11605 37252

ACC64 3355 32741 105706

GCD 1505 4901 15664

FU 5304 52023 167212

First, we compare the two approaches implemented in TD-POLAR with a wirelength-driven

placement flow and the timing-driven commercial asynchronous optimization flow Proteus.

For the wirelength-driven placement flow, we use the industrial placer Encounter to place

the design without setting any input timing constraint. This means Encounter will act as a pure

wirelength-driven placer and only targeting at optimizing the total wirelength of the circuit.
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The Proteus flow performs both the global and detailed placement on the input circuits

through leveraging synchronous placement tools. In particular, the Proteus flow breaks the

timing loops according to the PCHB template and add explicit timing constraints on each path

segments to improve the timing. To avoid the changing of input netlist, we also disable the

gate resizing step during the placement stage of Proteus flow.

(a) (b)

(c) (d)

Figure 3.5: (a) The convergence of s38417 by SI. (b) The wirelength and cycltime trend of
s38417 by SI. (c) The convergence of s38417 by SO. (d) The wirelength and cycltime trend of
s38417 by SO.
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For our approaches, we perform the timing-driven placement using TD-POLAR at the

global placement stage. At the detailed placement stage, we use the modified FastDP [63]

presented in Section IV-C as our detailed placement engine. Finally, the placement results are

exported to Encounter to perform routing.

The comparison results are shown in Table 6.1. The “Routed wirelength” column shows the

final detailed routed wirelength reported by Encounter for all flows. The “Cycletime” column

shows the cycletime calculated based on our delay model. The “Encounter” column denotes

the pure wirelength-driven placement performed by Encounter. The “SI” column denotes the

spreading-inside approach. The “SO” column denotes the spreading-outside approach. Regard-

ing the total routed wirelength, as expected, all the flows which perform timing optimization of

the circuit have a higher total wirelength than the non-timing-driven flow Encounter. Among

the timing-driven placement flows, both the spreading-inside and spreading-outside approach

can achieve a shorter total wirelength compared with the Proteus flow, while the spreading-

outside approach achieves the smallest wirelength. Regarding the cycletime, the timing-driven

placement flows can achieve much better cycletime than the non-timing-driven Encounter flow.

In particular, the Proteus flow is 15.4% better than the Encounter flow, while the spreading-

inside approach and spreading-outside approach is 31.1% better and 34% better than the En-

counter flow respectively. This shows the importance of timing-driven placement on optimizing

the timing of the circuits. It also shows our proposed approaches are more effective in improv-

ing the timing of asynchronous circuits than the Proteus flow, as our approaches consider all

timing loops globally and there is no need for extra explicit timing constraints. In addition, on

average, the spreading-outside approach achieves a shorter wirelength and a smaller cycletime

compared with the spreading-inside approach. This is because the spreading-outside approach

uses LR to handle a problem with timing constraints only, while the cell spreading constraints

are handled separately outside the LR loop, and hence better solutions can be expected. Re-

garding the runtime, the Encounter flow has the shortest runtime, since it does not perform

any optimization on circuit timing. The Proteus flow has the longest runtime, due to its added

explicit timing constraints which can be exponential to the circuit size. Both our approaches

are shown to be much faster and scalable in comparison with the Proteus flow. In particular,
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the spreading-inside approach is about 2X faster than the spreading-outside approach. This is

because the spreading-inside approach converges faster and can be stopped earlier.

The convergence sequences of our largest circuit s38417 using the spreading-inside approach

and the spreading-outside approach are shown in Fig. 6.5(a) and (c) respectively, where the

blue line denotes the objective value of the GT DP and the red line denotes the objective

value of the LRS-S. The corresponding changes of cycle time and total chip wirelength at

each iteration is shown in Fig. 6.5(b) and (d) respectively, where the red line denotes the

cycletime and the blue line denotes the wirelength. It can be seen that both approaches

are very effective in reducing the cycletime of the circuit. In addition, each iteration of the

spreading-outside approach includes five iterations of LR plus one step of rough legalization,

while each iteration of the spreading-inside approach only includes one step of LR and one step

of rough legalization. Thus, even though the total number of iterations for the spreading-inside

approach is larger than that of the spreading-outside approach in Fig. 6.5, it is actually stopped

earlier. However, as shown in the figure, the spreading-outside approach converges smoother

than the spreading-inside approach, due to its more fine-grained optimization at each step.

Therefore, after the detailed placement is performed, the spreading-outside approach is able to

achieve better results.

Next, we compare different detailed placement techniques in Table 6.3 and 6.4. For Table

6.3, the detailed placement are performed on the global placement results generated by the

spreading-inside approach. For Table 6.4, the detailed placement are performed on the global

placement results generated by the spreading-outside approach. For both tables, the column

“FastDP” denotes the flow where we directly use FastDP to perform wirelength-driven detailed

placement without adding weights. The column “TD-FastDP” denotes the timing-driven de-

tailed placement, where we add the weight from the global placement stage into FastDP. The

column “Legalize” denotes the detailed placement flow which only performs the legalization of

the global placement results using Encounter.

From the experimental results in Table 6.3 and 6.4, we can see that directly applying

FastDP to perform detailed placement can achieve a smaller total wirelength, but the cycletime

improvement we achieved at the global placement stage will be degraded a lot. In comparison,
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the weighted FastDP results in a small increase in the total wirelength, but the final cycletime

of the circuit will be much better. Also, the TD-FastDP approach is much better than the

legalization approach, which does not perform any optimization on wirelength and timing. In

terms of the runtime, the TD-FastDP is slightly slower than FastDP, as extra computation is

required to calculate the cost based on net weights.

3.6 Conclusion

In this paper, we have formulated a general timing-driven placement problem which is appli-

cable to various design styles. The proposed problem is solved through Lagrangian relaxation

technique. We simplified the relaxed problem using KKT conditions and proposed two different

approaches on incorporating the LR framework to solve the formulated general timing-driven

placement problem. One approach provides a quick way to leverage existing wirelength-driven

placers on solving the timing-driven placement problem. The other approach provides an op-

tion to tightly combine the LR framework with the existing wirelength-driven placer, and hence

better results can be achieved. To demonstrate the proposed approaches, we implemented a

placement tool based on a state-of-the-art wirelength driven quadratic placer. The experimen-

tal results shows our approaches can greatly improve the performance of the given circuits at

the placement stage.
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CHAPTER 4. DETAILED PLACEMENT ALGORITHM FOR VLSI

DESIGN WITH DOUBLE-ROW HEIGHT STANDARD CELLS

Conventional detailed placement algorithms typically assume all standard cells in the design

have the same height. However, as the complexity and design requirement increase in modern

VLSI design, designs with mixed single-row height and double-row height standard cells come

into existence in order to address the emerging standard cell design challenges. A detailed

placement algorithm without considering these double-row height cells will either have to deal

with a lot of movable macros or waste a significant amount of placement area, depending

on what type of techniques people use to accommodate such design. This paper proposes

a new placement approach which can handle designs with any number of double-row height

standard cells. We transform design with mixed-height standard cells into one which only

contains same height standard cells by pairing up single-row height cells into double-row height.

Then conventional detailed placement algorithms can be applied. In particular, we generate

cell pair candidates by formulating a maximum weighted matching problem. A subset of the

cell pair candidates are then carefully selected to form double-row height cells based on the

local bin density. A refinement procedure is performed at the end to further improve our

placement quality. We compare our approach with two alternative detailed placement methods

on mixed-height asynchronous and synchronous designs. The experimental results show that

our approach can achieve much better quality and robustness.

4.1 Introduction

Standard cell methodology has been widely adopted as a quick and efficient method to

overcome the continuously increasing complexity of integrated circuit design. In standard cell
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library design, cell height is fixed to an integer multiples of a unit row height, but cell width can

be variable. Conventionally, a standard cell library only contains cells with single-row height

[84], as smaller cell height can achieve a higher density for simple standard cells (e.g., inverter,

nand, nor) and hence lower the cost. However, for complex standard cells (e.g., flip-flop, latch),

the limitation on cell height will create heavy routing congestion. In this case, the persistence in

single-row height standard cells will greatly decrease layout efficiency and consume more layout

design time from engineers [4]. Also, for high performance applications, single-row height cells

might not be able to deliver sufficient current because the transistor size is small [11]. Thus,

multi-row height standard cells, in particular double-row height cells, are commonly intermixed

with smaller single-row height standard cells in order to increase the area, design efficiency and

help meet the design requirements [34][20].

Another case which motivates us to pay attention to double-row height cells is their common

existences in some other VLSI design styles. For example, for asynchronous circuit design, most

of its standard cell can be double-row height. This is because asynchronous logics require extra

circuits to generate handshaking signals [47][9], which means a larger and more complex cell is

required compared with their synchronous counterparts.

Placement has become a very critical step in today’s VLSI physical design flow. While

double-row height placement is available in commercial tools, it is still new in academic field

and most placement techniques typically assume all single-row height cells to be standard cells

and other cells to be fixed or movable macros [40]. The detailed placement algorithm will focus

more on improving the placement of standard cells while relying on floorplanning techniques

to place macros into a good location [63][65]. If the design only has a very small amount of

double-row height cells, treating them as macros works well. However, there are designs which

have more double-row height cells. In our case, the set of asynchronous benchmarks we used

for our experiment has an average of 77% double-row height standard cells in each design. If

we treat all double-row height cells here as movable macros, even the initial legalization step

can take a lot of runtime and we might still get overlaps in the end. This is because the

floorplanning techniques will not be scalable to hundreds and thousands of movable macros

[3]. Also, during later detailed placement steps, no optimization (such as the commonly used
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cell swapping methods [63][16]) is applied to these cells, as their locations are fixed in the very

beginning. Therefore, the placement quality of the design will be greatly affected.

An alternative way to place these design is to expand all single-row height cells to double-row

height. Then all standard cells will have the same height which is compatible to conventional

detailed placement algorithms. However, the cell expansion can increase chip utilization quite a

lot, depending on how many single-row height cells we have in our design. If the chip utilization

becomes too high, there will not be enough free space for the detailed placement algorithm to

explore a good placement solution. If the utilization becomes more than 100%, we will even

not be able to obtain a legalized placement. Also, cell expansion can lead to some cells not be

able to be placed closer together which means the wirelength will be increased.

In this paper, we are focusing on the problem of detailed placement for designs with any

number of double-row height cells. The input to our placement problem is a placement region,

a set of modules, and a set of nets. Also, we are given a set of rough locations for each modules

which is obtained from the global placement result. Our algorithm finds a position for each

module within the placement region so that there is no overlap among the modules and the

total wire length is minimized. Our idea is to transform mixed-height cells in a design into the

same height. Then conventional detailed placement techniques can be applied on them. The

equalization of cell heights is realized using a combination of two techniques: cell expansion

and cell pairing. In particular, in low density areas, we apply cell expansion by doubling the

height of single-row height cells to have minimum restriction on the cell movement. While in

high density areas, appropriate pairs of single-row height cells are identified and combined into

double-row height cells to achieve more available free space compared with simply doing cell

expansion.

Our detailed placement approach is compared with two alternative placement methods:

for the first method, all the height of single-row height cells will be doubled before doing

detailed placement. Then conventional detailed placement algorithm is applied on this equal cell

height but expanded design. For the second method, we directly applied conventional detailed

placement algorithm, which means all double-row height cells will be treated as movable macros

during the detailed placement process. The experimental results show that our placement
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approach can always achieve a better wirelength compared with the other two methods and is

much more robust in handling designs with different amount of double-row height cells.

The rest of the paper is organized as follows: Section II provides an overview of our ap-

proach. Section III explains each technique we used in details. Section IV shows the experi-

mental results compared with other methods. Finally, Section V concludes the paper.

4.2 Overview

Our goal here is to develop an algorithm which can handle designs with any number of

double-row height cells, while minimize the total wirelength of the design. Although we only

consider wirelength in this paper, other objectives (e.g., timing, routability, manufacturability)

can easily be considered by using a detailed placer optimizing those objectives.

A single-row height cell can be changed to double-row height by either simply expanding

the cell or pairing up two single-row height cells together and form a double-row height cell.

Pairing up cells can help to place them more tightly, which reduces the local bin density and

provide more free space for detailed placement algorithm to explore a good solution. However,

at the same time, forcing two cells to be placed together will restrict their movement and some

potential placement solution cannot be explored. In order to make sure that the formed cell

pairs do not impose too much restriction during the detailed placement, we only pick those

pairs which can provide us the most ”benefit”, which will be defined in Sec. III. Also, we go

back to the simple cell expansion strategy in low density areas where there is sufficient free

space even after expansion, in order to give each single-row height cell the maximum freedom

to move.

A high-level view of the flow developed in this paper is shown in Fig. 5.1.

Our flow works on a global placement result. The flow starts with a cell pairing procedure,

which is formulated as a maximum weighted matching problem and composed of three stages:

matching graph construction, maximum weighted matching and matching pair selection. Each

pair of single-row height cells will be merged into a double-row height cell. In cell expansion

step, single-row height cells which have not been paired up will be expanded to double-row

height. Next, conventional detailed placement algorithm is applied on the transformed design
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Figure 4.1: Detailed Placement Flow

which only contains double-row height cells. At the end, a refinement procedure is performed

based on the previous detailed placement results, in which we fix the location of double-row

height cells and run detailed placement algorithm on unpaired single-row height cells in order

to further improve the placement quality.

4.3 Detailed Placement Approach

4.3.1 Matching Graph Construction

The benefit of pairing up single-row height cells is modeled using a matching graph here.

The first thing we need to consider while constructing the matching graph is a good trade off

between solution space and algorithm running time. If we simply construct a matching graph

which an edge exists between any two single-row height cells in the design, we are able to

explore all possible cell pairing solutions. However, we will end up having a complete graph

with the number of edges quadratic to the number of single-row height cells and the runtime of

our matching algorithm will not be acceptable. On the other hand, if we construct a matching

graph which each cell is only connected with very few other cells, the total number of pairing

candidates for a cell will be too small. It is quite possible that some good cell pairs are missed.

Our matching graph is constructed like this: We divide the placement region into m × n

equal sized bins. Only cells within neighboring bins are considered to help limit the choice

when we search for candidates. In particular, for each single-row height cell u, we first locate
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the bin containing this cell. Then we look for all other single-row height cells V = {v1, ..., vn}

within this bin and the nearest neighboring bins. Next, we want to create an edge between u

and any vi ∈ V , if the Manhattan distance between u and vi is less than a target distance r.

Here the target distance r is carefully selected such that each cell will have enough candidates

to be chosen from and the overall running time of the matching algorithm will not be too much.

Ignoring cells out of range r to be a candidate does not make a big impact on the quality of

matching algorithm, as pairing up cells far away can dramatically change the global placement

result and make the overall wirelength worse.

Figure 4.2: Construct Matching Graph

An example of matching graph construction is shown in Fig. 5.2. To search for matching

candidates of cell Q, we first look at all single-row height cells within the shaded region, which

is cell A, B and C. Cell D will be ignored in this case. Then we check if the distance between

(Q,A), (Q,B) and (Q,C) is within a feasible range shown as a doted diamond in this figure.

In this example, A and B is selected as matching candidates and edges (Q,A) and (Q,B) are

added to the matching graph. We do not consider C as a matching candidate, as C is out of

the range.
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4.3.2 Edge Weight Calculation

We want to calculate edge weight based on the associated benefit if two cells are paired

up. Three different factors are considered during our weight calculation: cell connectivity, area

increase and cell displacement.

4.3.2.1 Cell connectivity

Here we want to consider the connectivity between cells and give more chance to those with

strong connectivity in the netlist to form a pair.

Given two single-row height cells u and v. Let C be the connectivity factor for edge (u, v)

in our matching graph. Let e be a hyperedge connecting cells u and v in the netlist. Let |e|

be the number of cells that are incident to this hyperedge. Clique model is applied here to

decompose hyperedges.

We define C as:

C =
∑

e∈E|u,v∈e

1

|e|

where E is the set of hyperedges in the netlist.

4.3.2.2 Penalty on area increase

The width difference between two cells can play an important role while we form pairs.

Consider a simple example which four cells A, B, C and D want to form into two pairs. If a

wide cell is paired up with a thin cell as shown in Fig. 5.3 (a), a lot of placement area will be

wasted after grouping this two cells together. Instead, if we pair up cells with similar width

as shown in Fig. 5.3 (b), the total area after pairing will be much smaller than the previous

method.

Here we define PA as the penalty on area increase. Consider two standard cells u and v

which have single-row height h. We can set PA as follows, where Wu and Wv are the widths

of cells u and v.

PA = h ∗ |Wu −Wv|



www.manaraa.com

60

(a) (b)

Figure 4.3: (a) Pair up cells with large width difference (b) Pair up cells with small width
difference

4.3.2.3 Penalty on cell displacement

Another factor we considered is cell displacement. We want to encourage pairing up two

cells which are closer together while adding penalty on forming pairs which the two cells are

relatively far away. The idea is to minimize the perturbation of global solution, such that the

total wirelength will not be affected too much after pairing up cells.

Let PD be the penalty of cell displacement. Let d(u, v) be the Manhattan distance between

two cells u and v. The cell displacement penalty can be defined as:

PD = d(u, v)

Putting everything together and let B be the benefit of forming a pair, we can get:

B = C − α1 ∗ PA− α2 ∗ PD

where constant α1 and α2 can be chosen to adjust the effect among cell connectivity, area

penalty and displacement penalty.

4.3.3 Maximum Weighted Matching

We use maximum weighted matching to find a set of candidate cell pairs such that pairing

them up will result in maximum benefit. Matching problem is one of the most well-studied

problems in computer science. There are many existing algorithms in the literature which can

either find a perfect matching or do some approximation [22]. In order to find the one which

is most suitable to our problem, we implemented two different matching algorithms in our

experiment to perform weighted matching. One is based on the Edmond’s maximum weighted

matching algorithm [23] which provides O(nmlog(n)) runtime complexity and another is a
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simple greedy approach [21] which can find an approximate solution within a linear runtime.

The experiment results show that these two approaches provide similar wirelength results, while

the second approach has a much better runtime. Thus, the second one is chosen in our flow.

4.3.4 Matching Pair Selection

It is not the best to pair up all single-row height cells from the matching result. Forming

a pair will force the two cell to be placed together and put restrictions on detailed placement.

For the matched pairs with small edge weight, the benefit they provide cannot justify to tie

them up. This is especially true for matched pairs in low density area. It would be better to

simply expand those cells and give them freedom to move, since in low density area, there will

always be enough free space even after cell expansion.

In our flow, we only pick the top portion of matching results based on edge weight and

local bin density to perform actual cell pairing, while the remaining single-row height cells are

simply expanded to become double-row height.

We should notice that, after the cell pairing and expansion, the local bin density might

change. The new density will depend on not only the initial bin density of the given placement,

but also the total area of single-row height cells which do not form a pair. This is because the

unpaired single-row height cells will double their area when they are expanded to double-row

height.

Here we divide the chip into p × q equal sized bins. The size of the bins we used here can

be different from the one we used during matching graph construction in Sec. III A. Let Db

be the density for bin b after global placement. Let k be the area percentage of single-row

height cells which do not form a pair in this bin. Then the new density D′b after pairing and

expansion will be: D′b = 2 ∗ kDb + (1 − k)Db = (1 + k)Db. Here D′b is just an approximate

value. Pairing process might move single-row height cells from one bin to another bin which

can affect the bin density. There will also be some area wastage after we pack two single-row

height cells together. However, considering both the cell movement and area wastage is small,

we simply ignore these facts to make our algorithm simple. As we are only locally estimating

D′b, for designs with very high utilization, there might be an utilization overflow issue after cell
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expansion. But because of what we did, the chance of having such an issue is very unlikely and

we have never encountered any issue in practice.

After cell candidates are generated, we first globally filter out matched pairs which have a

small edge weight. Then for each bin, we select part of the matching results to form cell pairs

based on D′b. In particular, we want to keep D′b within a good range to make sure that each bin

will have enough free space and we also do not form too many pairs to limit the cell movement.

The selected single-row height cell pairs are then paired up into double-row height cells with

the new location in the middle of the corresponding single-row height cells.

4.3.5 Unpair and Refinement

After we run conventional detailed placement algorithm on the transformed design and get

a legalized solution, there might still be room for wirelength improvement. First is because

the pairs we formed in the design restrict two cells not be able to be placed in separate places.

Second, the expansion on some single-row height cells also limits them to be put closer to

other cells. Thus, we run detailed placement for a second time without these restrictions by

unpairing cells and deflating the expanded cells. The locations of double-row height cells are

fixed at this run, as we assume they have already been placed into a good location during the

previous detailed placement process.

4.4 Experimental Results

The proposed approach is implemented using C++ and run on a Linux PC with 8 GB of

memory and Intel 2.4 GHz CPU.

Two sets of benchmarks are used in our experiment. First is a set of asynchronous VLSI

designs synthesized using an asynchronous frond-end flow [6]. Another set of benchmarks are

created based on the ISPD05 placement benchmark suite. We randomly selected about 30%

single-row height standard cells in the design and doubled their height. The placement region

area is keep to be the same. POLAR [46] is used to generate global placement results as an

input to our flow.
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We choose FastDP [63] as our detailed placement engine with small modification to make

sure double-row height cells are placed only on even rows. Since FastDP is designed for single-

row height benchmarks, if all standard cells are placed on even rows while some macros are

aligned with odd rows, FastDP might create some overlaps. We solve this problem by adding

placement blockages on the row above and / or below each macros. Two alternative methods are

developed to be compared with our approach. In method 1, we apply cell expansion technique

in which we double the height of single-row hight cells. Then, FastDP is run on this expanded

design with all cells having equal height. In method 2, we treat the double-row height cells

as movable macros. The design is first legalized using techniques described in [82], then we

use FastDP to perform the detailed placement. The values of α1 and α2 are experimentally

determined and we set α1 = 2× 10−3 and α2 = 2× 10−4 for all the benchmarks.

Figure 4.4: Experiment on adaptec2 dr benchmark

Comparison results on asynchronous benchmarks are shown in Table I. Second column shows

the total number of cells. The percentage of double-row height cells and the chip utilization

are shown in the third and fourth column. The “Init” column shows the wirelength of the

global placement results after legalization. For the wirelength, our approach is 3% better than

the first method and 14.8% better than the second method. The runtime of our approach

is a little bit worse than the first method, as our approach run FastDP twice, but we are

much better compared with the second method. The “Overlaps” column shows the number of
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Figure 4.5: Experiment on bigblue1 dr benchmark

overlaps reported by FastDP after the detailed placement. Both our approach and method 1

can generate a legalized placement with zero overlaps. However, for the second method, almost

all the designs cannot be legalized, as there are too many macros which is beyond the ability

of FastDP to handle.

Table II shows the comparison results on synchronous benchmarks. On average, our wire-

length is 72.2% better than the first method and 3.5% better than the second one. Also, our

algorithm runtime on average is better compared with the other two methods. For method 1,

the reason is because the cell expansion increases chip utilization too much and ends up making

FastDP take a much longer time to perform optimization. For method 2, its runtime is better

than our approach only when the design size is small. As the design size increases, legalization

techniques used inside FastDP will not be scalable to the increasing number of movable macros.

Thus, the runtime becomes much slower. We can also see that method 1 failed to place some

designs, as their chip utilization become greater than 1 after we expanded single-row height

cells in this two designs.

To further illustrate the robustness of our approach, we did another set of experiments

using adaptec2 and bigblue1. We generate a new set of benchmarks with different percentage

of double-row height cells in a design by randomly picking certain number of single-row height

cells and doubling their height. Then, our approach and the other two methods are run on this

new set of benchmarks. The original adaptec2 and bigblue1 design have the utilization of 81%
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and 61%. Since most of the cell area is occupied by macros, there will not be an utilization

overflow.

The results are shown in Fig. 5.4 and Fig. 5.5. X axis is the ratio of double-row height

cells in the design and Y axis is the total wirelength. It can be seen that method 1 which apply

cell expansion techniques do a very bad job when single-row height cells are dominating in the

design. The total wirelength gradually get improved with the increasing number of double-row

height cells. In contrast, method 2 which treats all double-row height cells as macros works

well when double-row height cells are not so many, but the wirelength gets worse when total

number of double-row height gets increased. For adaptec2 dr, method 2 cannot even finish

within a reasonable amount of runtime when the number of double-row height cells below 30%.

In comparison, no matter how many double-row height cells exists in the design, our approach

always produces placement results with better wirelength.

4.5 Conclusions and Future Work

In this paper, we have proposed a detailed placement approach targeting at designs with

mixed single-row height and double-row height standard cells. We incorporated cell paring and

cell expansion techniques and transformed the mixed-height design into design containing only

standard cells of the same height. Then any conventional detailed placement algorithm can be

applied. Our approach is compared with other two alternative methods to place design with

mixed-height standard cells and achieves both better quality and robustness.

Our future work is to incorporate bin utilization constraints into our algorithm. In partic-

ular, we want to consider bin utilization during the edge weight calculation in Sec III-B and

use a detailed placement engine which supports bin utilization constraints.
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CHAPTER 5. GATE SIZING AND VTH ASSIGNMENT FOR

ASYNCHRONOUS CIRCUITS USING LAGRANGIAN RELAXATION

Gate sizing and threshold voltage selection is an important step in the VLSI physical de-

sign process to help reduce power consumption and improve circuit performance. Recent asyn-

chronous design flows try to directly leverage synchronous EDA tools to select gates, which

have a lot of limitations due to the intrinsic difference between asynchronous and synchronous

circuits. This paper presents a new simultaneous gate sizing and Vth assignment approach for

asynchronous designs. We formulate the asynchronous gate version selection problem consid-

ering both leakage power consumption and cycle time. Then, the optimization is performed

based on a Lagrangian relaxation framework. A fast and effective slew updating strategy is

also proposed to address the timing-loops of asynchronous circuits during static timing analy-

sis. Our approach is evaluated using a set of asynchronous designs based on the pre-charged

half buffer (PCHB) template and compared with the Proteus asynchronous design flow which

is leveraging synchronous EDA tools. The experiments show our approach can achieve much

better quality results in terms of both leakage power and cycle time compared with the other

approach.

5.1 Introduction

As the feature size of advanced fabrication process is down to nanometer scale, the design

of synchronous circuit is facing more and more issues such as process variation and power

consumption. Asynchronous design provides a very attractive alternative to synchronous design

due to its robustness, lower power consumption and higher operating speed. Its advantages

have been demonstrated by many fabricated chips [50] [51] [19]. However, asynchronous design
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is still not widely adopted in the industry because of its long learning curve and the lack of

asynchronous EDA tools.

Gate sizing and Vth assignment have been shown to be very effective techniques to optimize

the power and performance of synchronous circuits. We expect these techniques to have similar

impact on asynchronous circuits. In particular, we want to minimize the leakage power, as in

advanced process it contributes to a large part of total power consumption which has become

an important design objective nowadays due to the limited battery life of the widely used

portable devices. For asynchronous design, leakage power minimization can be even more

critical because of its higher gate count than synchronous design. Therefore, in this paper, we

are focusing on the problem of leakage power and cycle time minimization for asynchronous

design by selecting gates of different sizes and Vth from a standard cell library.

Both gate sizing and Vth assignment techniques for synchronous circuits have been exten-

sively studied for decades [26] [10] [14] [57]. However, for asynchronous circuits, there are only

very few works on it. Most of the automatic synthesis flows for asynchronous circuits try to

directly leverage synchronous EDA tools [6] [78]. As the circuit structure, performance metric

and timing constraints for asynchronous circuits are quite different from those for synchronous

circuits, these approaches require to break the timing-loops and add explicit timing constraints

the number of which is exponential to the circuit size. For large scale designs, the complicated

timing constraints are beyond the ability of synchronous EDA tools to handle thus inferior

results are generated. In [30], a genetic algorithm based simultaneous gate sizing and Vth as-

signment technique specific for asynchronous circuits has been proposed to minimize the leakage

power while maintaining the performance requirements. However, genetic algorithms usually

have long runtime and are not scalable, which makes it unsuitable for large scale circuits.

A fast and accurate static timing analysis (STA) method is essential to guide the gate selec-

tion algorithm to achieve a good solution within a short amount of runtime. For synchronous

circuits, this can be done by a simple graph traversal as the corresponding combinational logic

network can be represented as a directed acyclic graph (DAG). However, for asynchronous cir-

cuits, the way to perform STA is not straightforward due to its more general circuit structure

which might contain internal combinational loops. In [66], a STA flow on pre-charged half
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buffer (PCHB) and Multi-Level Domino (MLD) templates has been proposed, which leverages

a commercialized synchronous timing analyzer. However, this approach is limited to template

based designs as automatically finding the cut points requires a regular circuit structure. Also,

the achieved timing value is not accurate as time borrowing across the broken segments is not

allowed.

This paper presents a new simultaneous gate sizing and Vth assignment approach for asyn-

chronous circuits. We formulate the gate selection problem to minimize both the leakage power

and cycle time while satisfying various type of asynchronous timing constraints. A Lagrangian

relaxation framework is applied on the formulated problem to transform it into a sequence of La-

grangian relaxation subproblems (LRS). In particular, the arrival time based linear constraints

allow us to simplify LRS using Karush-Kuhn-Tucker (KKT) conditions [5]. This simplified LRS

can then be easily solved using an effective greedy algorithm. The proposed gate selection ap-

proach considers discrete cell sizes and threshold voltages from the standard cell library, and is

implemented based on the accurate non-linear delay model (NLDM). In addition, to overcome

the obstacle of STA for asynchronous circuits, we propose an iterative slew update algorithm

which is accurate and guarantees fast convergence with library-based timing models.

We evaluate our flow using a set of asynchronous designs based on the PCHB templates

and compare it with a latest asynchronous design flow Proteus [6]. Our flow is shown to be

consistently better and we have achieved significant improvements in both the cycle time and

leakage power. Our approach is more effective than those which twist and trick synchronous

EDA tools to generate a functional circuit as it directly handles timing loops, which means

time borrowing along the loop is allowed and the number of constraints is polynomial in circuit

size.

The rest of this paper is organized as follows. In Section II, we give an overview about the

synchronous gate selection techniques. Several timing issues related to asynchronous circuits

are discussed and the gate selection problem is then formulated. In Section III, a Lagrangian

relaxation based approach is presented to solve the gate selection problem. In Section IV, we

discuss the proposed STA approach for asynchronous circuit. In Section V, we summarize the

implemented asynchronous gate selection flow.
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5.2 Preliminaries

5.2.1 Gate Selection Techniques for Synchronous Circuits

The discrete gate sizing problem is proved to be NP-hard [58]. Therefore, various heuristic

algorithms like convex programming [70], sensitivity based algorithms [33] and so on have been

proposed by researchers to assign proper sizes and threshold voltages for gates in synchronous

circuits. There are even organized gate sizing contests [59] [60] to help expose the challenges

faced in modern industrial designs to the academic field. One powerful heuristic approach

adopted by leading synchronous gate selection algorithms [27] [48] is to apply the Lagrangian

relaxation (LR) technique. In [14], foundations for LR-based gate sizing approach is first es-

tablished, which considers continuous sizing and simple delay models. The LR-based approach

is then continuously got improved as people are combining it with library-based timing model,

discrete gate sizing, Vth assignment, dynamic programming and network flow algorithms [27]

[48] [61] [83]. The advantage of LR-based approach is that it can be easily modified to handle

different objectives and various complex design constraints. Even though convexity cannot

be claimed for the discrete gate sizing problem, the LR-based approach is shown to have fast

convergence in practice and is practical to large scale problems. Although extensive research

has been done for the LR-based gate selection algorithms of synchronous circuits, whether it is

applicable and effective to asynchronous circuits is still not being explored.

5.2.2 Full Buffer Channel Net Model

Here we use the Full Buffer Channel Net (FBCN) [8] to model our asynchronous circuits.

A FBCN is a specific form of timed marked graph. The idea is to model each leaf cell as

a transition and asynchronous channels between cell ports are modeled with a pair of places

which are annotated with delay information. Please note that here we treat the asynchronous

circuits as unconditional. For conditional asynchronous circuits modeled using FBCN, the

circuit performance can be guaranteed conservatively as proved in [53].

As an example, a simple ALU design is shown in Fig. 3.1 and the corresponding marked

graph based on the FBCN model is shown in Fig. 3.2. Here, tmul1 and tmul2 represent the
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two-stage multiplication cells and tadd represents the addition cell. All the places are denoted

as circles. In particular, places containing tokens are represented by circles marked with a black

dot. Two channels on the left are assumed to be in the full state and have tokens assigned on

the forward places. The rest of the channels are assumed to be empty and have tokens assigned

on the backward places.

Figure 5.1: Asynchronous ALU.

Figure 5.2: Marked graph representation for Asynchronous ALU.

5.2.3 Asynchronous Performance Analysis

There are many existing algorithms which are able to capture the cycle metric of asyn-

chronous circuits. In this paper, we adopt a linear programming based approach [49], as it can

be easily incorporated in to our Lagrangian relaxation framework.

For any asynchronous circuit modeled with FBCN, the cycle time τ can be obtained by

solving the following linear program, where ai and aj are the arrival time associated with

transitions ti and tj .

Minimize τ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j)
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Dij is the delay associated with a place p between two neighboring transitions ti and tj .

mij = 1 if the corresponding place p contains a token and 0 otherwise.

Please note that in practice, there can be multiple delay values such as the rising and falling

delay associate with a place p, The different delay values can be considered by simply extending

the existing constraints. Here we ignore these details in order to make our presentation more

concise.

5.2.4 Asynchronous Timing Constraints

Compared with synchronous circuits which only have setup and hold time constraints, asyn-

chronous circuits can have some totally different timing constraints depending on the timing

assumptions made by the specific asynchronous logic implementation style. For the bounded-

delay asynchronous designs [76], two-sided timing constraints need to be enforced which require

both a minimum and maximum allowable delay of a specified gate or wire. Instead, for the

quasi-delay-insensitive (QDI) design style such as WCHB, PCHB, MLD template, relative de-

lay constraints referred to as relative timing [74] need to be enforced, which dictate the relative

delay of two paths that stem from a common point of divergence. These two design categories

cover most of the existing timing constraints specific to asynchronous circuits. We will show

how to incorporate these constraints into our problem formulation in Sec. II E.

5.2.5 Asynchronous Gate Sizing and Vth Assignment

In this subsection, we formulate the asynchronous gate selection problem considering the

performance and timing constraints. For an asynchronous circuit modeled with FBCN, let T be

the set of transitions and P be the set of places in the timed marked graph. In particular, we use

p(i, j) to denote the place between neighboring transitions ti and tj . Let a = {a1, a2, ..., a|T |}

be the set of arrival times corresponding to T . Let g = {g1, g2, ..., g|T |} be the set of gates

corresponding to T and we use vji to represent a specific selected version j for gate gi. Let g0

be the initial set of selected gates before optimization and τ0 be its corresponding cycle time. In

addition, we use Pb to denote the set of places annotated with two-sided delay bounds. We use

Prt to denote the set of places annotated with relative timing constraints. Then the problem of
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minimizing both total leakage power consumption and cycle time subject to timing constraints

can be formulated as:

Minimize leakage(g)/leakage(g0) + ατ/τ0

Subject to ai +Dij −mijτ ≤ aj ∀ p(i, j) ∈ P (5.1)

Lij ≤ aj − ai ≤ Uij ∀ p(i, j) ∈ Pb (5.2)

|(ai − ak)− (aj − ak)| ≤ Iij ∀ p(i, j) ∈ Prt (5.3)

where the constant α can be chosen to adjust the tradeoff between minimizing the normalized

leakage power and the normalized cycle time. Lij and Uij denote the minimum and maximum

bounded delay. Iij denotes the relative delay stemming from transition tk and forking into two

transitions ti and tj . leakage(g) captures the summation of leakage power for the set of gates

g with selected versions.

We can rewrite the timing constraints in Equations (2) and (3) into the same form with the

performance constraints in Equation (1) as follows:

(ai + Lij ≤ aj) ∧ (aj − Uij ≤ ai) (5.4)

(aj − Iij ≤ ai) ∧ (ai − Iij ≤ aj) (5.5)

Then, combining Equation (1) with the reformulated Equations (4) and (5), we can get a

more concise representation of our primal problem:

PP : Minimize leakage(g)/leakage(g0) + ατ/τ0

Subject to ai + D̂ij − m̂ijτ ≤ aj ∀(i, j)

where D̂ij represents Dij , Lij , −Uij or −Iij depending on the corresponding places annotated

with performance or timing constraints. Also, we have m̂ij = mij for all performance con-

straints and m̂ij = 0 for all timing constraints. ∀(i, j) represents all the i, j pairs corresponding

to p(i, j) ∈ P ∪ Pb ∪ Prt.



www.manaraa.com

75

5.3 Simultaneous Gate Sizing and Vth Assignment by Lagrangian

Relaxation

In this section, we propose our LR-based approach to solve the formulated asynchronous

gate selection problem PP. In Sec. III A, the Lagrangian relaxation subproblem (LRS) which

provides a lower bound to the solution of PP is obtained by applying LR technique to PP. In

Sec. III B, we first simplify LRS using applying KKT conditions. Then, an effective greedy

algorithm is proposed Sec. III C to solve this simplified LRS. In Sec. III D, we solve the

Lagrangian dual problem (LDP) to achieve a solution of PP by iteratively solving a sequence

of simplified LRS.

5.3.1 Lagrangian Relaxation Subproblem (LRS)

First, we apply Lagrangian relaxation to the primal problem. We attach a set of nonneg-

ative Lagrangian multipliers λ = {λij | ∀(i, j)} to all the constraints in PP and relax these

constraints into the objective function. Then the Lagrangian relaxation subproblem we get is:

LRS : Mimimize leakage(g)/leakage(g0) + ατ/τ0

+
∑
∀(i,j)

λij(ai + D̂ij − m̂ijτ − aj)

The relaxed problem becomes an unconstrained optimization problem. Please note that

the variables we have for LRS are g, a and τ while λ is a given parameter. For any given set

of λ ≥ 0, solving LRS will provide a lower bound to the optimal solution of PP [5].

5.3.2 Simplified Lagrangian Relaxation Subproblem (LRS∗)

Similar to [14], we rearrange terms here and the LRS can be rewritten as:

Mimimize leakage(g)/leakage(g0) + (α−
∑
∀(i,j)

λijm̂ij)τ/τ0

+
∑
k∈T

(
∑
∀(k,j)

λkj −
∑
∀(i,k)

λik)ak

+
∑
∀(i,j)

λijD̂ij



www.manaraa.com

76

The idea behind this rearrangement is to group all the coefficients associated with cycle

time variable τ and arrival time variables a, which make them easier to be removed as we will

show in the next step.

Let L(g,a, τ) be the objective function of LRS. The KKT stationarity conditions imply

∂L/∂ai = 0 for 1 ≤ i ≤ |T | and ∂L/∂τ = 0 at the optimal solution of the primal problem.

Then we can get the following optimality conditions:

KKT : α =
∑
∀(i,j)

λijm̂ij

∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀ k ∈ T

Apply the optimality conditions into LRS, we can obtain a simplified Lagrangian relaxation

subproblem as follows:

LRS∗ : Minimize leakage(g)/leakage(g0) +
∑
∀(i,j)

λijD̂ij

After the simplification, variables τ and a are removed. The only variables left are the set

of selected gates g associated with transitions. It can be seen that LRS∗ is equivalent to LRS

and it is much easier to solve.

5.3.3 Solving LRS∗

Algorithm 1 shows our algorithm to solve LRS∗. First, we assign an initial version to each

gate and insert all the gates into a set G. Then, we pick any gate gi from G and use Algorithm

2 to find a better version for it, i.e., picking a different size or threshold voltage for that gate.

If the selected new version vki of gi is different from its old version vji , we assign vki to the gate

and insert all its fanout gates not in G into G. Otherwise, we do not reevaluate its downstream

cells if they are not in G. In particular, if the gate has been visited more than a certain number

(n) of times, we also do not reevaluate its downstream cells in order to save runtime. The

algorithm terminates when G is empty.

The algorithm to select a new gate version is shown in Algorithm 2. For each possible

version vji of a specific gate gi, we first update the gate to this new version.
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Algorithm 2 Solve LRS∗

Ensure: a proper version for each gate which minimize LRS∗
1: Initially assign all the gates with a version;
2: Insert all the gates into a set G;
3: while G 6= ∅ do
4: Pick one gate gi from G. Let its current version be vji ;
5: Select a new version vki for gate gi; /* Algorithm 2 */

6: if vji 6= vki then
7: Assign gi with this new version vki ;
8: if gi is visited less than or equal to n times then
9: Insert all gates /∈ G and directly driven by gi into G;

10: end if
11: end if
12: Remove gi from set G;
13: end while

Next, we need to estimate the timing impact made by this gate version change. Instead of

doing STA for the entire circuit which can be very time consuming, we perform a local timing

update here. In particular, we update the output load of all the fanin gates (fanin(gi)) which

is driving gi and the input slew of all the fanout gates (fanout(gi)) which is driven by gi. We

also update the input slew of all the side gates (side(gi)) which are defined as all the gates

driven by fanin(gi) except gi. Then we recompute the delay for all the timing arcs associated

with gi and its fanin, fanout and side gates.

Let Arci = timingArcs(gi ∪ fanin(gi)∪ fanout(gi)∪ side(gi)) be the set of updated timing

arcs. After the local timing update, we can evaluate the cost to objective value of LRS∗ as

follows:

Cost(gi) = leakage(gi) +
∑

(u,v)∈Arci

λuvD̂uv

After all the possible options for the current gate have been evaluated, the one providing the

minimum cost will be returned as the best choice.

5.3.4 Lagrangian Dual Problem (LDP)

In Sec. III A, we mention that a lower bound to the optimal solution of PP can be obtained

by solving LRS for any given set of λ ≥ 0.
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Algorithm 3 Gate Version Selection

Ensure: Best version for the gate gi which minimize LRS∗
1: for each available option vji for the gate gi do

2: Assign vji to gi;
3: Local timing update;
4: if Cost(gi) < bestCost then
5: bestVersion = vji ;
6: bestCost = Cost(gi);
7: end if
8: end for
9: return bestVersion;

Now we discuss how to find the specific λ that gives us the maximum (i.e., tightest) lower

bound. It is formulated as the Lagrangian dual problem as follows:

LDP : Maximize LRS

Subject to λ ≥ 0

Please note that g, a, τ along with λ are all variables for the Lagrangian dual problem.

Solving LDP will provide the best solution to the primal problem.

Instead of maximizing LRS, we want to incorporate the optimality conditions and maximize

the equivalent yet simpler problem LRS∗. Thus, the Lagrangian dual problem can be rewritten

as:

Maximize LRS∗

Subject to λ ≥ 0, λ ∈ KKT

5.3.5 Solving LDP

LDP can be solved by iteratively solving a sequence of LRS∗. A commonly used strategy

is the subgradient optimization method [5]. However, this method requires a projection for λ

after each iteration in order to maintain λ within the feasible region of LDP. For synchronous

circuits, this can be done by simply traversing the circuit in topological order. For asynchronous

circuits, it will not be easy to redistribute λ as the corresponding circuit structure contains

loops. In addition, achieving a good convergence using this subgradient optimization method

is difficult and usually requires a careful choice of initial solution and step size.
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To resolve these issues, we apply a direction finding approach inspired by [83] to solve LDP,

which is shown to have better convergence and no projection is needed.

Let q(λ) denotes the optimal objective value of LRS∗ for a given set of λ. The direction

finding approach wants to find an improving feasible direction ∆λ and a step size β such that

at each step we have:

q(λ+ β∆λ) > q(λ)

In particular, the improving feasible direction ∆λ can be found by solving the following

linear program:

DF : Maximize
∑
∀(i,j)

∆λijD̂ij

Subject to λ ≥ 0, λ ∈ KKT

max(−u,−λij) ≤ ∆λij ≤ u

where u is used to bound the objective function and avoid it goes to infinity, similar to [83].

After we find the improving feasible direction, the step size β can be obtained by optimizing

along this direction using any line search technique.

The detailed algorithm to solve LDP is presented in Algorithm 3. It starts from an initial

dual feasible λ, which is non-negative and satisfies the optimality conditions. Then the method

iteratively improves q(λ) by finding an improving direction and performing a line search to find

the best step size. The algorithm terminates when q(λ) is not improving or the total number

of iterations exceeds the limit.

5.4 Static Timing Analysis for Asynchronous Circuits

An efficient asynchronous STA method is necessary for us to compute the delay values and

cycle time τ using library-based timing model. In order to do the STA, we first find the output

slew values of each gate using an iterative slew rate update approach described in Sec. IV A.

Then, D̂ij can be achieved by lookup table interpolation in the same manner as synchronous

STA. Finally, the cycle time can be computed using the linear program described in Sec. II C.
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Algorithm 4 Solve LDP
Ensure: λ which maximizes LRS∗
1: n = 1; /* loop counter */
2: λ = initial non-negative value satisfy optimality conditions;
3: while n < limit do
4: Solve DF to obtain improving direction ∆λ;
5: while line search not terminate do
6: Compute β based on specific line search technique;
7: λ′ = λ+ β∆λ;
8: Solve LRS∗ to obtain q(λ′);
9: if q(λ′) > bestObj then

10: bestStep = β;
11: bestObj = q(λ′);
12: end if
13: end while
14: if bestObj ≤ q(λ) then /* q(λ) is not improving */
15: exit loop;
16: end if
17: λ = λ+ bestStep ∗∆λ; /* move one step further */
18: Solve LRS∗;
19: n = n+ 1;
20: end while

5.4.1 Iterative Slew Update Approach

The algorithm to implement the iterative slew update approach is presented as Algorithm

4. It is similar to Algorithm 1 which solves LRS∗. Here, we also keep a set G of gates. A gate

is in G if its current output slew is potentially inconsistent with its current input slews. In

particular, we define an output slew to be inconsistent, if the resulting output slew might be

larger than the current one when we evaluate it based on the current input slews. We define it

to be “larger than” as we are trying to find an upper bound of all the slews.

In the beginning, we initialize the output slew of all gates to 0. Thus, all gates should be

in the set G because all of them are potentially inconsistent. In each step, we pick any gate gi

from the set and update its output slew. If the new output slew snew is larger than the current

one sold, we update the output slew of gi to snew and put all gates driven by this gate while

not in G into the set G. When G is empty, i.e., the output slews of all gates are consistent, the

algorithm terminates.
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Algorithm 5 Iterative Slew Update

Ensure: A tight upper bound of the output slew for all the gates;
1: Initialize the output slew to 0 for all the gates;
2: Insert all the gates into a set G;
3: while G 6= ∅ do
4: Pick one gate gi from G. Let its current output slew be sold;
5: Compute new output slew snew of gi based on its input slew;
6: if snew > sold then
7: Update the output slew of gi to snew;
8: Insert all gates /∈ G and directly driven by gi into G;
9: end if

10: Remove gi from set G;
11: end while

5.4.2 Convergence of the proposed approach

We can easily use induction technique to prove that the output slew of every gate will be

monotonically increasing throughout the execution of Algorithm 4. Since all the slew values

are upper-bounded, we know the proposed algorithm always converges. Let S = {s1, ..., s|T |}

be the set of slew values computed by the proposed algorithm. Then, we can have the following

theorem:

Theorem 1. For each gate, its corresponding output slew value in S is a tight (i.e.,

smallest) upper bound of all its output slew values during the operation of the circuit.

Proof: We prove this using contradiction. Assume the slew values computed by Algorithm

4 are not tight, which means there exists gates whose corresponding slew value in S is larger

than its maximum achievable slew value during the circuit operation. Let gi be the first gate

during the iterative slew evaluation process such that its output slew is set to si which is larger

than its maximum achievable slew value. Based on the slew evaluation process, we know the

output slew of gi is computed based on the output slew of one of its fanin gates gj . Since si is

unachievable, the current output slew sj of gate gj must also be unachievable. This makes gi

not the first gate the output slew of which is set to an unachievable value, which contradicts our

assumption. Therefore, we can conclude that the computed slew in S is a tight upper bound

of all the slew values.
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5.4.3 Extension to a tight lower bound

A tight upper bound for all the slew values will guarantee the design satisfies performance

constraints as shown in Equation (1). However, for other type of constraints such as the

two-sided timing constraints in Equation (2), we might need a tight low bound in order to

conservatively satisfy them. This can be achieved by a simple modification of Algorithm 4.

Instead of setting all the slew values to 0 in the beginning, here we initialize all of them to the

maximum possible slew value in the cell timing library. Then at line 6, we change the condition

to snew < sold, which makes the output slew of every gate monotonically decrease throughout

the execution. Similar to the proof of Theorem 1, the modified algorithm will give us a tight

lower bound of all the slew values.

5.5 Asynchronous Gate Selection Flow

We summarize our flow for asynchronous gate sizing and Vth assignment in Fig. 3.3.

Figure 5.3: Asynchronous Gate Selection Flow.

The input to our flow is the characterized cell timing library and the netlist. Initially, STA

is run for the whole circuit to update the timing and an initial set of λ ≥ 0 satisfying the

optimality conditions is found. Next, we enter the loop to solve the LDP similar to Algorithm

3. The final output of our flow is a gate sizing and Vth assignment solution with both cycle

time and leakage power being minimized.
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5.6 Experiments

The proposed gate sizing approach is implemented in C++ and runs on a Linux PC with

8 GB of memory and 2.4 GHz Intel Core i7 CPU.

We are using the Proteus standard cell library [6] which is based on an implementation of

the PCHB template. Cell delay and slew values are calculated using the static timing analysis

method described in Sec. IV with the accurate non-linear delay model lookup tables from

the cell timing library. Cell interconnections are modeled as simple lumped capacitance in

our experiment. The lumped capacitance value is obtained from the SPEF file generated by

Proteus flow after placement and routing. As the leakage power is not available in Proteus

standard cell library, we assign it to be proportional to cell area, which is the same strategy

used in ISPD 2013 discrete gate sizing contest benchmarks [60].

In order to show the effectiveness on the power saving after applying the Vth assignment

techniques, we also extends the Proteus standard cell library into a multi-Vth library, as the

original library only considers single Vth. We scale the leakage power value and look up tables

according the ratio between different Vth cells in the cell library provided by the ISPD 2013

gate sizing contest. In particular, based on the original cells, we generate a set of low threshold

voltage cells with 4X more leakage power but 0.9X smaller delay. Similarly, we generate a set

of high threshold voltage cells with 0.25X leakage power but 1.15X larger delay.

We evaluate our approach using two sets of benchmarks. First is a set of asynchronous

designs transformed from ISCAS89 benchmarks, which have flip-flops mapped as token buffers

and combinational gates mapped as logic cells using Proteus. We also have a set of specific

asynchronous designs developed using Verilog and synthesized into gate level netlist using

Proteus. Different bit widths are applied to some of the benchmarks to create designs with

different sizes.

We need to set the parameter α, which is the tradeoff between leakage power consumption

and circuit performance. As our flow starts optimization with all cells assigned with the mini-

mum cell size which have the minimum possible leakage power, we set α = 2 to put a similar

effort on optimizing power and cycle time of the given circuit. The limit for the total number



www.manaraa.com

84

of iterations is set to be 50, which is shown to be able to provide enough improvement within a

short amount of runtime. We do not perform any benchmark specific parameter tuning during

our experiment. After running the gate selection flow, we run our STA algorithm until con-

vergence to measure the cycle time and the leakage power consumption of our gate selection

result.

Figure 5.4: (a) The convergence sequence of s38417. (b) Cycle time and leakage power trends
of s38417.

First, we do the experiment by running our flow using the original single-Vth library in

order to compare with Proteus. Both flows use the same input netlist starting with cells

assigned with minimum size. Comparison results on the transformed ISCAS89 benchmarks

are shown in Table 3.1. “Total itr.” column shows the total number iterations performed for

each benchmarks until termination. PPobj denotes the achieved objective value for the primal

problem. LRSobj denotes the achieved objective value for the LRS. “Gap” column shows the

duality gap which helps us to know how close our solution is to the optimal solution. The

duality gap here is calculated using (PPobj − LRSobj)/PPobj . “Init” columns show the initial

cycle time and leakage power, which all the cells are assigned with the minimum size. “Proteus”

and ”Ours” columns show the cycle time and leakage power for gate sizes generated by the

Proteus flow and our flow respectively. The results show our approach is consistently better in

both cycltime and power consumption for all benchmarks. For the cycle time, on average, our

approach is 2.19X better than the initial minimum sized circuit and 21.3% better than the gate

sizing results from Proteus. For the leakage power consumption, our approach is 9.5% better
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than Proteus and only consumes 3.7% more power than the initial minimum sized circuits,

which have the minimum possible leakage value. Table 3.2 shows the comparison results on the

specific asynchronous benchmarks and have achieved similar improvements. Proteus does not

have a separate gate sizing step and makes us not able to measure the time it spends only for

gate sizing. On average, the runtime of our algorithm is around 5 minutes, which is less than

10% of the total runtime of the entire Proteus flow. This indicates our flow runs fast enough

and will not be a runtime bottleneck during the entire design process.

Next, we run our flow using the expanded multi-Vth library. The results are shown in the

“Multi-Vt” columns in Table 3.1 and Table 3.2. In Table 3.1, compared with running our

flow on the single-Vth library, the Vth assignment technique using multi-Vth library can save

70.5% of total leakage power consumption with only 2.4% increase on the cycle time. Similar

improvement is shown in Table 3.2.

The convergence sequence of our largest circuit s38417 is shown in Fig. 3.4(a), which

is generated by running the flow on single-Vth library without limiting the total number of

iterations. The corresponding changes of cycle time and leakage power at each iteration is

shown in Fig. 3.4(b). It can be seen that our algorithm converges smoothly and the final

results are very close to the optimal solution. It also shows that the improvement after 50th

iteration is small and suggests that terminating the algorithm earlier can save a large amount

of runtime without sacrificing the quality too much.

5.7 Conclusions

This paper proposes a gate selection flow for asynchronous circuits. To solve the gate se-

lection problem, we incorporate the linear-programming-based performance evaluation method

with the Lagrangian relaxation framework. The relaxed problem is simplified and the LRS

can then be easily solved. We also proposed an iterative slew updating approach for the static

timing analysis of asynchronous circuits. Our STA approach is simple yet effective which can

directly handle timing loops. We compared our approach with an asynchronous design flow

which is leveraging synchronous EDA tools and significant improvement is achieved.
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CHAPTER 6. SIMULTANEOUS SLACK MATCHING, GATE SIZING

AND REPEATER INSERTION FOR ASYNCHRONOUS CIRCUITS

Slack matching, gate sizing and repeater insertion are well known techniques applied to asyn-

chronous circuits to improve their power and performance. Existing asynchronous optimization

flows typically perform these optimizations sequentially, which may result in sub-optimal solu-

tions as all these techniques are interdependent and affect one another. In this paper, we present

a unified leakage power optimization framework by performing simultaneous slack matching,

gate sizing and repeater insertion. In particular, we apply Lagrangian relaxation to integrate

all these techniques into a single optimization step. A methodology to handle slack matching

under the Lagrangian relaxation framework is proposed. Also, an effective look-up table based

repeater insertion technique is developed to speed up the algorithm. Our approach is evalu-

ated using a set of asynchronous designs and compared with both a sequential approach and a

commercial asynchronous optimization flow. The experimental results have achieved significant

savings in leakage power and demonstrated the effectiveness of our approach.

6.1 Introduction

Asynchronous designs have been demonstrated to be able to achieve both higher perfor-

mance and lower power compared with their synchronous counterparts [50] [51] [19]. However,

due to the lack of proper EDA tool support, the design cycle for asynchronous circuits is much

longer compared with the one for synchronous circuits. Thus, even with many advantages,

asynchronous circuits are still not the mainstream in the industry, and it is very important to

develop EDA tools for asynchronous circuits design.
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Stalls are major obstacles limiting the performance of pipelined asynchronous circuits [72].

Due to the slack elasticity for most asynchronous designs, adding pipeline buffers to the design

will not change its input/output functionality, but can help remedy the stalls [7]. Thus, slack

matching, which inserts minimum number of pipeline buffers to guarantee the most critical cycle

meets the desired cycle time, is widely used for asynchronous circuits [9]. Most previous works

related to slack matching formulate the problem as a mixed integer linear program (MILP)

[7] [67] [54], which is NP-Complete and the integral constraints need to be relaxed in order to

solve the problem efficiently. In [81], a heuristic algorithm is proposed to solve the problem by

leveraging the asynchronous communication protocol.

Other than slack matching, gate sizing and repeater insertion are also very effective tech-

niques to reduce the delay and power consumption for asynchronous circuits. Gate sizing and

repeater insertion for synchronous circuits has been studied for decades and there are many

works tackling these problems [14] [26] [80]. However, those works cannot be directly applied to

asynchronous circuits, due to the intrinsic differences between asynchronous and synchronous

circuits in terms of performance analysis and optimization. In [89], a gate sizing and Vth

assignment approach for asynchronous circuits has been proposed. It achieved significant im-

provements compared with previous asynchronous gate sizing approaches. To the best of our

knowledge, there is no work on repeater insertion for asynchronous circuits.

Most automated asynchronous design flows apply slack matching, gate sizing and repeater

insertion separately either in a sequential manner [90] [78] or in an iterative manner [6]. In

Proteus [6], a MILP based slack matching optimization is performed first, followed by gate

sizing and repeater insertion which are done by leveraging synchronous EDA tools. Since all

these three optimization techniques are closely related to each other, doing them separately

may not explore the solution space sufficiently thus yields sub-optimal results. During our

experiments, in term of the number of gates, the circuits optimized by Proteus contain 27.1%

pipeline buffers on average. This huge amount of pipeline buffers inserted at the slack matching

step create a serious area and power overhead, which can be even more critical for asynchronous

circuits, since asynchronous designs intrinsically have higher gate count than its corresponding

synchronous design. Another disadvantage is that earlier steps of the separated optimization
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approach have to perform optimizations based on inaccurate delay values. In Proteus, the slack

matching is performed based on a rough unit delay model, which simply counts the number

of gates along the timing path. Considering the dominating interconnect delays in advanced

technologies and the gate sizing and repeater insertion operations performed in later steps, this

unit delay model can be very inaccurate and even misleading to the optimization algorithms.

In this paper, we address the problem of minimizing the total leakage power consumption

while guaranteeing a target cycle time for unconditional asynchronous pipelined circuits. Three

different optimization techniques: slack matching, gate sizing and repeater insertion are effec-

tively joined together under the Lagrangian relaxation (LR) framework. As far as we know, this

is the first work that formulates and solves this simultaneous optimization problem combining

all these three techniques together.

Our approach is distinctive from previous ones by offering the following benefits:

• Much fewer pipeline buffers can be used for the slack matching purpose, since some stalls

can simply be fixed by either gate sizing or repeater insertion which have much less area

overhead and consume less power.

• Our approach can prevent excessive sizing when a gate is driving a large load, as we

consider repeater insertion together with the gate sizing.

• When design contains extremely long wire delays, i.e., cross chip interconnections, our

approach can explore the solution of adding pipeline buffers to break the channel into

multiple pipeline stages, which is more beneficial than just doing gate sizing or repeater

insertion.

• More accurate delay estimation at each optimization step can be achieved by calculating

the delay using the non-linear delay model (NLDM).

The main contributions of this paper are as follows:

• A unified LR framework incorporating gate sizing, repeater insertion and pipeline buffer

insertion together.
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• Methodology for handling pipeline buffer insertion under the LR framework, especially

how to update the corresponding Lagrangian multipliers.

• A fast look-up table based repeater insertion approach.

• Results which show significant improvements compared with both the sequential approach

and a commercial asynchronous optimization flow.

The rest of this paper is organized as follows. In Section II, a motivating example is pre-

sented. Section III shows an overview of the framework. Section IV introduces the backgrounds

of LR. Section V presents our optimization algorithm. Finally, the experiments are presented

in Section VI.

6.2 A Motivating Example

In this paper, we use the Full Buffer Channel Net (FBCN) [7] to model our asynchronous

circuits. A FBCN is a specific form of Petri net [64]. The idea is to model each leaf cell as a

transition. Channels between cell ports are modeled with a pair of places which are annotated

with delay information. The handshaking signals are modeled as tokens. A simple asynchronous

three-stage pipeline and its corresponding FBCN model is shown in Fig. 4.1 (a) and (b).

(a) (b)

Figure 6.1: (a) Three-stage pipeline. (b) FBCN model.

Here, transition tbuf1, tbuf2 and tbuf3 represent the buffer cells. Circles are places which

represent the channels between neighboring buffer cells. In particular, places containing tokens

are represented by circles marked with a black dot. In Fig. 4.1, the propagation delay is

2 + 2 + 2 = 6, which is the time for tokens propagate from tbuf1 to tbuf3 and back to tbuf1. The
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local cycle time is 2 + 6 = 8, which is the shortest time for a buffer to complete a handshake

with its neighbors. Since the propagation delay is less than local cycle time, stall happens. The

performance of this design is bounded by the highlighted most critical cycle. The corresponding

cycle time is (6+6+6)/2 = 9, which is calculated by the cycle delay divided by the total number

of tokens along this cycle.

The stall can be resolved by slack matching, which adds an extra pipeline stage in the

design as shown in Fig. 4.2 (a). The slack matched design operates at desired local cycle time.

The most critical cycle is highlighted, which is same as the local handshaking cycle.

Another way to resolve the stall is to improve the acknowledgment (ack) time, as shown in

Fig. 4.2 (b). This can be done by simply sizing up BUF3 or inserting repeaters at its output

ack pin. Sizing gates or inserting repeaters are much more economical than inserting pipeline

buffers, since pipeline buffers, which contain extra handshaking circuits, are much bigger. For

the cell library we have, the smallest size pipeline buffer is 4.8X bigger than the smallest size

repeater.

(a) (b)

Figure 6.2: (a) Stall fixed by inserting pipeline buffers. (b) Stall fixed by gate sizing or repeater
insertion.

Considering typical asynchronous flows which perform the optimization sequentially, if a

slack matching solution as shown in Fig. 4.2 (a) is applied first, it is very difficult for the flow

to go back to the better solution as shown in in Fig. 4.2 (b). Therefore, we develop the unified

optimization approach which is able to achieve much better results.
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Figure 6.3: High-level View of Our Framework.

6.3 Optimization Framework Overview

A high-level view of our optimization framework is shown in Fig. 4.3. The fundamental

idea is to size the gates or insert proper repeaters / pipeline buffers to minimize the leakage

power while satisfying the timing constraints. However, if we simply enumerate all the gate

size, repeater or pipeline buffer choices, the runtime will not be affordable due to the enormous

number of possible combinations. Thus, before solving the problem, the first thing we need

to consider is how to limit the solution space and speed up the evaluation process, while still

keeping a good solution quality. We do this by constructing candidate pipeline buffer locations

and performing table look-up for repeater insertion.

The generated candidate buffer locations and look-up tables are then fed into our Lagrangian

dual problem (LDP) solver, where the gate sizing, buffer insertion and repeater insertion prob-

lems are joined by Lagrangian multipliers, acting as “weights” associated with each timing

arc. The weights help us to find a proper sizing and buffer / repeater insertion solution for

the circuit, and the LR framework provide us a systemic way to adjust the weights at each

iteration.

6.4 Lagrangian Relaxation Framework

LR is a very useful mathematical approach which transforms the constrained primal prob-

lem (PP) into an unconstrained and easier LR subproblem (LRS). Inspired by [14], the special

circuit structure allows us to further transform LRS into an equivalent but even simpler prob-
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lem LRS∗. For a given set of non-negative LR multipliers λ, solving LRS∗ provides us a lower

bound of PP. Then, the LR dual problem (LDP) which provides us a solution to PP can be

solved by iteratively solving a sequence of LRS∗.

For an asynchronous circuit modeled with FBCN, our primal problem which minimizes total

leakage power subject to performance constraints can be formulated similar to [89] as shown

below:

PP : minimize leakage(g, b, r)

Subject to ai +Dij −mijτ ≤ aj ∀ p(i, j) ∈ P

where g is the set of select gates, b is the buffer solution and r is the repeater solution. τ is

the given target cycle time. Let T be the set of transitions and P be the set of places in the

FBCN model. ai and aj denote the arrival times associated with transitions ti and tj . p(i, j)

denotes the place between ti and tj . Dij is the delay associated with p(i, j). mij = 1 if p(i, j)

contains a token and 0 otherwise.

By relaxing all constraints into the objective function, we can obtain the LRS as:

LRS : minimize leakage(g, b, r)

+
∑
∀(i,j)

λij(ai +Dij −mijτ − aj)

Similar to [14], LRS can be further simplified into LRS∗ by applying KKT optimality

conditions:

KKT :
∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀ k ∈ T

LRS∗ : minimize leakage(g, b, r)

−
∑
∀(i,j)

λijmijτ +
∑
∀(i,j)

λijDij

Finally, we obtain LDP by maximizing LRS∗:

LDP : maximize LRS∗

Subject to λ ≥ 0, λ ∈ KKT
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6.5 Simultaneous Gate Sizing, Repeater Insertion and Pipeline Buffer

Insertion

6.5.1 Constructing Candidate Pipeline Buffer Location

Fig. 4.4 shows a three-stage asynchronous pipeline implemented using the PCHB template

[47]. Stage 1 and stage 3 are computation stages. In particular, domino logic cells (LOGIC)

are used for computation and control circuit (CTRL), C-elements (C) are used to perform

handshaking. The dual rail channel contains two data wires (A[0].0, A[0].1), and one wire (Le)

for the ack signal. Thus, we can easily identify all the channels in the circuit and pre-insert a

candidate pipeline buffer inside each channel, similar to stage 2 in Fig. 4.4.

Figure 6.4: A three-stage PCHB pipeline.

Different from regular pipeline buffers, we assign the pre-inserted pipeline buffer with two

modes: transparent and opaque, as shown in Fig. 4.5 (a) and (b) respectively. The transparent

mode is used to model the situation in which no buffer is inserted and the opaque mode is

used to model the opposite situation. In transparent mode, the pipeline buffer has three timing

arcs denoted as t1 to t3, acting as wires connecting the corresponding ack or data pins. It

contributes zero leakage power to the circuit. Also, during static timing analysis, the slew

values seen at its input pins will be propagated to the corresponding output pins for all its

fanout cells. Similarly, the load capacitance seen at its output pins will be forwarded to the

input pins for the fanin cells. In opaque mode, the pre-inserted buffer acts as a normal pipeline

buffer and there are 9 timing arcs denoted as t1 to t9 from each input pin to each output pin.

Then, instead of actually modifying the netlist, the algorithm can simply switch the buffer

between transparent and opaque mode to achieve the same effects as removing / inserting the

buffer.
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(a) (b)

Figure 6.5: Pre-inserted pipeline buffer: (a) Transparent mode (b) Opaque mode

As described in Sec. IV, the set of Lagrangian multiplier λ needs to satisfy KKT conditions

during the update process. Let λt1 denote the λ associated with timing arc t1 and similarly

for all other λs. Let us consider the λ sum at pin L.e and R.e. Since these two pins are

connected by a single timing arc in transparent mode, the λ sum at pin L.e and the λ sum at

pin R.e should be equal, and they should keep to be equal when the buffer transforms between

transparent mode and opaque mode. This requires us to have: λt1 +λt2 +λt3 = λt1 +λt4 +λt7

for the λs in opaque mode. However, the λ update in opaque mode might not follow the above

rule, which can make the λs violating the KKT conditions when the buffer is transformed back

to transparent mode. Similarly, for other pins, the same issue will also happen.

A simple solution is to only update λt1, λt5 and λt9 while keeping all other λs to be 0 in

opaque mode. However, this might put too much restrictions on λ values and make them unable

to accurately reflect the criticality of each timing arc. Thus, we propose a better solution where

we enforce the following equality constraints during λ update:

(λt2 = λt7) ∧ (λt3 = λt4) ∧ (λt6 = λt8)

These constraints guarantee the updated λs always satisfy the KKT conditions in both

modes, while it avoids putting too much restrictions on the original λ values.
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6.5.2 Constructing Look-up Tables for Fast Repeater Insertion

If we do not consider any blockages, repeaters can be inserted at any location of the wires.

In order to limit the solution space and simplify our algorithm, here we only consider inserting

repeaters at the input / output pins of each gate. However, even under such an assumption,

the possible choices for repeater insertion are still too many even for one gate, because we can

have different size or number of repeaters at each pin. Therefore, we propose a look-up table

technique to speed up our evaluation process. In particular, we construct a 2D look-up table

for each pin of each gate in our standard cell library. The X-axis of the look-up table is the

load capacitance driven by the repeaters. The Y-axis is the sum of the values of λs at this pin,

as shown in Fig. 4.6.

Figure 6.6: Look-up table at each pin.

Given the load and λ value of each look-up table entry, we evaluate all the possible repeater

insertion choices at this pin based on a typical input slew. The best choice, i.e., the one

providing the smallest cost, will be stored in the table. The cost is evaluated based on the

following cost function:

Cost(gi) = leakage(gi) +
∑

(u,v)∈Arci

λuvDuv (6.1)

Here, Arci is defined to be the set of timing arcs of repeater gi and all the fanin and fanout

gates of gi.

It might happen that the actual λ and load value calculated by the LDP solver does not

match any of the index values in the look-up table. In this situation, we simply evaluate all

four choices surrounding this point and pick the best one.
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6.5.3 Solving LDP

We apply a direction finding approach inspired by [83] to solve LDP, as shown in Fig. 4.7.

Figure 6.7: Lagrangian dual problem solver.

In step 1, we find an initial set of non-negative λs satisfying the KKT conditions.

In step 2, an improving feasible direction ∆λ can be found by solving the following linear

program, which maximize the first order approximation of LRS∗:

DF : maximize
∑
∀(i,j)

∆λijDij −
∑
∀(i,j)

∆λijmijτ

Subject to λ ≥ 0, λ ∈ KKT

max(−u,−λij) ≤ ∆λij ≤ u

here u is used to bound the objective function and avoid it goes to infinity, similar to [83].

In step 3, we find a proper step size α by optimizing along the feasible direction ∆λ using

line search techniques. In particular, we solve the LRS∗ for a given set of λ at each potential

step. The step size which achieves q(λ+α∆λ) > q(λ) will be selected as α. Here, q(λ) denotes

the optimal objective value of LRS∗.

We keep iterating between steps 2 and 3 until q(λ) does not improve or the number of

iterations (n) exceeds the limit.
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6.5.4 Solving LRS∗

Since asynchronous circuits contain loops, it does not has a topological order which is

commonly used in synchronous optimization algorithms. Thus, here we use a sequential update

technique as shown in Algorithm 1. The idea is to traverse all the gates in a sequential order

and locally pick a best solution which minimize LRS∗. If the newly picked solution is different

from the old one, we will reevaluate all its fanout gates. Please note that in Algorithm 1, the

gate refers to all the gates in the original circuit and the pre-inserted candidate pipeline buffers,

but it does not represent the repeaters inserted by our algorithm. For a regular gate, a solution

at a gate means a proper size and repeater insertion choices of this gate. For a candidate

pipeline buffer, the solution also denotes whether the buffer is in opaque or transparent mode.

Algorithm 6 Solve LRS∗

Ensure: a proper solution for each gate which minimize LRS∗
1: Assign all the gates with an initial solution;
2: Insert all the gates into a set G;
3: while G 6= ∅ do
4: Pick one gate gi from G. Let its current solution be sji ;
5: Select a better solution ski for gate gi; /* Algorithm 2 */

6: if sji 6= ski then
7: Assign gi with this new solution ski ;
8: if gi is visited less than or equal to n times then
9: Insert all gates /∈ G and directly driven by gi into G;

10: end if
11: end if
12: Remove gi from set G;
13: end while

Algorithm 2 shows our local evaluation algorithm which find the best local solution at each

gate based on the following cost function:

Cost(gi) = leakage(gi)−
∑

(u,v)∈Arci

λijmijτ (6.2)

+
∑

(u,v)∈Arci

λuvDuv

Similar to equation (1), Arci is the set of timing arcs of gate gi and all the timing arcs of gi’s

fanin and fanout gates.

In step 2 of Algorithm 2, the method we used to pick proper size and repeaters of this gate

is simply evaluating all its possible sizing and repeater insertion options. In particular, we first
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Algorithm 7 Local Evaluation

Ensure: Best solution for gi which locally minimize LRS∗
1: if gi is a regular gate then
2: Select a proper sizing, repeater insertion option for gi;
3: else /* gi is a candidate pipeline buffer */
4: if gi is in opaque mode then
5: Change gi to transparent mode;
6: Local timing update;
7: If the cost is not reduced, recover to opaque mode;
8: else /* gi is in transparent mode */
9: Change gi to opaque mode;

10: Update λ for all the timing arcs of gi;
11: Select best sizing and repeater insertion solution for gi;
12: If the cost is not reduced, recover to transparent mode;
13: end if
14: end if
15: return bestSolution;

select a certain size for this gate, then the repeater insertion options at each of its pin can be

found using the look-up tables. The cost of each sizing and repeater insertion combination will

be calculated based on equation (1).

6.6 Experiments

The proposed optimization approach is implemented in C++ and runs on a Linux PC with

8 GB of memory and 2.4 GHz Intel Core i7 CPU.

Our unified optimization approach is tested using two sets of asynchronous benchmarks.

First is a set of asynchronous benchmarks transformed from ISCAS89 benchmarks. Second is a

set of specific asynchronous designs. In particular, we use different bit widths on the datapath

of ALU and Accumulator designs to generate the set of benchmarks with different number of

gates. All the designs are transformed or synthesized using the Proteus front-end flow [6].

Accurate non-linear delay model is used to calculate delay and slew value based on the

look-up tables from Proteus standard cell library. Cell interconnections are modeled as lumped

capacitance, which is obtained by extraction after placement and routing. Since the original

cell library does not contain leakage power, we assign a leakage power for each cell which is

proportional to its area. The cycle time achieved by Proteus is used as a timing constraint for

our unified flow and the sequential approach described below.
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For comparison purpose, we implemented a sequential approach similar to our unified op-

timization flow, but it only performs one type of optimization at each iteration. In particular,

the sequential approach starts with 10 iterations of pipeline buffer insertion, followed by 10

iterations of repeater insertion and 30 iterations of gate sizing. We use this order because gate

sizing is the more fine-grained optimization and it is better to be applied at last.

Comparison results on the transformed ISCAS89 benchmarks are shown in Table 4.1. “#

of gates” column shows the total number of gates. “Cand.” column shows the number of pre-

inserted candidate pipeline buffers. “Target” column shows the target cycletime obtained from

Proteus flow. The “Proteus”, “Seq.” and “Ours” columns show the results of the Proteus, the

sequential approach and our approach respectively. Leakage power, the number of inserted

buffers and the number of inserted repeaters are compared among different flows. All results

satisfy the target cycletime constraints. The results show our approach is much better in power

consumption and insert fewer buffers and repeaters. Comparing the leakage power, on average,

our approach is 56.5% better than the Proteus flow and 14.1% better than the sequential flow.

Table 4.2 shows the comparison results on the specific asynchronous benchmarks. Similar

improvements are achieved. For the leakage power, our approach is 27.1% better than the

Proteus flow and 11.1% better than the sequential flow.

The significant improvements in both sets of benchmarks suggest that all these techniques

are very closely related to each other and the proposed joint optimization approach can provide

significant benefits compared with the non-simultaneous ones. Proteus does not have a separate

circuit optimization step and so we are not able to measure its runtime. The average runtime

of our algorithm is around 6.5 minutes, which indicates our flow runs fast enough and will not

be a runtime bottleneck of the design process.

6.7 Conclusions

In this paper, we have proposed a simultaneous slack matching, gate sizing and repeater

insertion approach for asynchronous circuits. We apply Lagrangian relaxation to integrate all

these techniques into a single optimization step. The relaxed problem is further simplified

using KKT conditions. Effective techniques to handle pipeline buffer insertion and repeater
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insertion under the Lagrangian relaxation framework are proposed. A local evaluation algo-

rithm is also developed to solve the relaxed problem efficiently. The experimental results show

significant improvements on power consumption and demonstrate the benefits of performing

these optimizations simultaneously rather than sequentially.
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CHAPTER 7. A FAST INCREMENTAL MAXIMUM CYCLE RATIO

ALGORITHM

In this paper, we propose an algorithm to quickly find the maximum cycle ratio (MCR) on

an incrementally changing directed cyclic graph. Compared with traditional MCR algorithms

which have to recalculate everything from scratch at each incremental change, our algorithm

efficiently finds the MCR by just leveraging the previous MCR and the corresponding largest

cycle before the change. In particular, the previous MCR allows us to safely break the graph at

the changed node. Then, we can detect the changing direction of the MCR by solving a single

source longest path problem on a graph without positive cycle. A distance bucket approach

is proposed to speed up the process of finding the longest paths. Our algorithm continues to

search upward or downward based on whether the MCR is detected as increased or decreased.

The downward search is quickly performed by a modified Karp-Orlin algorithm reusing the

longest paths found during the cycle detection. In addition, a cost shifting idea is proposed to

avoid calculating MCR on certain type of incremental changes. We evaluated our algorithm

on both random graphs and circuit benchmarks. A timing-driven detailed placement approach

which applies our algorithm is also proposed. Compared with Howard’s and Karp-Orlin MCR

algorithm, our algorithm shows much more efficiency on finding the MCR in both random

graphs and circuit benchmarks.

7.1 Introduction

Given a directed cyclic graph and each edge in the graph is associated with two numbers:

cost and transition time. Let the cost (respectively, transition time) of a cycle in the graph be

the sum of the costs (respectively, transition times) of all the edges within this cycle. Assuming
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the transition time of a cycle is non-zero, the ratio of this cycle is defined as its cost divided

by its transition time. The maximum cycle ratio (MCR) problem finds the cycle whose ratio is

the maximum in a given graph [18]. Applications of the MCR problem exist in various areas,

e.g., performance analysis of synchronous or asynchronous circuits, time separation analysis of

concurrent systems, graph theory [17].

In practice, most of the optimization processes which apply MCR algorithms are actually

performed incrementally. For example, during the detailed placement stage of VLSI circuits,

one step of the algorithm adjusts the coordinates of only a few cells. Then, evaluation is

performed for this modified circuit before the next move [63] [86]. Similarly, in the gate sizing

process of circuits, the algorithm might adjust the size of one gate at a time, instead of changing

the sizes of all the gates at once [89]. Considering the above type of applications which only

few changes are made at each step, the MCR algorithm might also be able to do the calculation

“incrementally” by leveraging the information calculated at the previous step, and therefore be

able to find the MCR much faster. In this paper, we focus on the MCR problem considering

such incremental changes, which we referred to as the incremental MCR problem. By leveraging

the previously calculated information, we expect the incremental MCR algorithm to be faster

than traditional MCR algorithms, which have to recalculate everything from scratch at each

step.

The MCR problem without considering the incremental changes has been well studied

[18][17][29]. One way to solve the MCR problem is by linear programming [49]. In addition,

various MCR algorithms are proposed to solve the problem more efficiently. Experimental

study of existing MCR algorithms shows the Karp and Orlin’s algorithm (KO) [38] and an

efficient implementation of KO [91] is the fastest among them [17]. When the graph size is

small, the Howard’s algorithm (HOW) [32] is also able to generate comparable results [18]. For

the incremental MCR problem, only very few researches have been done. In [13], the authors

developed an adaptive negative cycle detection algorithm and incorporated it into the Lawler’s

MCR algorithm [43]. However, the experiments in [13] are performed only on very small graphs,

and thus the efficiency of the algorithm cannot be confirmed.
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In addition, Lawler’s algorithm finds MCR based on the binary search idea, which is much

slower compared with KO and HOW [17].

In this paper, we propose an efficient incremental MCR algorithm. The only information

we need to leverage is the previous MCR and the corresponding largest cycle in the graph

before the incremental change is made. Our algorithm contains three parts: cycle detection,

local upward search and global downward search. After an incremental change is made on the

given graph, the cycle detection is performed first. During the cycle detection, we filter out

the cases which the incremental change will not affect the MCR using our cost shifting idea. If

we cannot guarantee the MCR will not be affected, the algorithm continues to detect whether

the MCR is increased or decreased. If the MCR is detected to be increased, we perform the

local upward search to identify the new MCR in the changed graph. Otherwise, we perform

the global downward search to identify the new MCR. To speed up the cycle detection and

the local upward search, we propose a bucket distance idea which can quickly build a longest

path tree in a graph without positive cycle. Also, we reuses the longest paths found in cycle

detection by a modified KO algorithm to speed up the global downward search. We evaluate

our algorithm on both random graphs and the ISPD 2005 placement benchmarks [55]. To

evaluate our algorithm on circuit benchmarks, we propose a timing-driven detailed placement

approach which applies our incremental MCR algorithm. The experimental results show our

algorithm to be very efficient on calculating MCR compared with the fastest traditional MCR

algorithms.

The rest of this paper is organized as follows. In Section II, we briefly review the Howard’s

algorithm and the Karp-Orlin algorithm. In Section III, we present our incremental MCR

algorithm. In Section IV, we present our timing-driven detailed placement approach. Finally,

the experimental results are shown in Section V.
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7.2 Preliminaries

7.2.1 Maximum cycle ratio problem

We formally define the MCR problem in this section. Let G = (V,E) be a directed cyclic

graph. Each edge e ∈ E is associated with a cost denoted as w(e) and a transition time denoted

as t(e). Let c denotes a cycle in G. Let τ(c) denotes the cycle ratio of c. With the assumption

that
∑
∀e∈c t(e) > 0, the MCR problem finds the maximum τ(c) ∀c ∈ G as:

τ∗(G) = max
c⊂G

{∑
∀e∈cw(e)∑
∀e∈c t(e)

}
Here, we use τ∗(G) to denote the MCR of G. As an example, Fig. 7.1 shows a graph with two

cycles (a, b, c) and (a, b, d, c). The two numbers associated with each edge denote its cost and

transition time respectively. By calculating the ratio of both cycles, we can identify the largest

cycle shown as the dotted lines in Fig. 7.1. However, for larger graphs, it is difficult for us to

enumerate all the cycles to find out which one is the largest, as the total number of cycles can

be exponential to the graph size.

Figure 7.1: Finding the maximum cycle ratio in a graph.

One way to solve the maximum cycle ratio problem is to formulate it as a linear program

[49]:

Minimize τ

Subject to d(i) + w(i, j)− t(i, j) ∗ τ ≤ d(j) ∀(i, j) ∈ E

Here, (i, j) denotes the edge connecting node i to node j. d(i) and d(j) are free variables for

each node v ∈ V denoting its distance.

In addition to the linear program solution, various algorithms have been proposed and are

able to solve the problem more efficiently. We discuss these algorithms below.
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7.2.2 Traditional maximum cycle ratio algorithms

Given a cycle ratio τ , we can construct another graph Gτ = (V,Eτ ) based on G. Gτ is

identical to G, except now each edge in Eτ is associated with only one number length, instead

of having two numbers (i.e. cost and transition time). Each e ∈ Eτ will have a corresponding

edge e′ ∈ E, and the length of e is defined as l(e) = w(e′) − τ ∗ t(e′). Correspondingly, the

length of a cycle c ∈ Gτ is defined as l(c) =
∑
∀e∈c l(e).

Gτ has many interesting features which can help us identify the largest cycle in G. In

particular, if Gτ contains positive length cycles, it means the given cycle ratio τ is less than

τ∗(G). If Gτ contains zero length cycles and does not contain positive length cycles, the given

τ will be equal to τ∗(G), and the zero length cycle in Gτ will correspond to the largest cycle in

G. If Gτ only contains negative cycles, it means the given cycle ratio τ is larger than τ∗(G).

In this case, single source longest path trees rooted at any node v ∈ V exist in Gτ . Detailed

proofs of these facts can be found in [17].

Most of the MCR algorithms use the above facts to transfer the MCR problem into the

problem of either detecting positive cycles in Gτ or maintaining a longest path tree in Gτ .

Howard’s algorithm and Karp-Orlin algorithm are two of the fastest algorithms among them,

and they tackles the MCR problem in exactly opposite directions. In particular, Howard’s

algorithm starts with a very small τ and gradually increases τ until it cannot detect a positive

length cycle in Gτ . Karp and Orlin’s algorithm starts with a very large τ and gradually

decreases τ while maintaining a longest path tree in Gτ .

7.2.2.1 Howard’s algorithm (HOW)

HOW can be separated into two phases: the discovery phase and the verification phase. If

the starting cycle ratio τ is small enough, all the cycles in Gτ will have a positive length. In the

discovery phase, an arbitrary positive length cycle c ∈ Gτ is located, and we increase τ to τ ′

such that l(c) = 0 in Gτ ′ . Next, in the verification phase, a positive cycle detection algorithm

(e.g., the Bellman–Ford algorithm) can be used to check if there are still positive cycles in Gτ ′ .
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If so, we repeat the discovery phase. If not, we are safe to exit the algorithm and output τ ′ as

τ∗(G). More details and pseudo code for HOW can be found in [18][17].

7.2.2.2 Karp and Orlin’s algorithm (KO)

KO starts with a large enough τ such that all cycles in Gτ is negative and thus longest

paths are well defined in Gτ . Here, we use a simple example to illustrate the basic idea of KO.

For more details, please refer to [18][17][91].

In the beginning, KO modifies G by adding a node s and a set of edges Es connecting s to

all nodes v ∈ V , with w(e) = 0 and t(e) = 1 for all e ∈ Es. Let a path from s to node v in G be

denoted by p(s, v), which corresponds to the path from root s to v in the longest path tree Ts

in Gτ . For each node v ∈ V , we have w(v) =
∑
∀e∈p(s,v)w(e) and t(v) =

∑
∀e∈p(s,v) t(e), shown

as (w(v), t(v)) in Fig. 7.2. For each edge (i, j) ∈ E, let ∆w(i, j) = w(i) + w(i, j) − w(j) and

∆t(i, j) = t(i) + t(i, j) − t(j). Then, a max heap containing all the edges in G is maintained

using the key value calculated as follows:

key(i, j) =


∆w(i, j)/∆t(i, j), if ∆t(i, j) > 0.

−∞, otherwise.

Fig. 7.2 shows the process of calculating τ∗(G) using KO for the graph G shown in Fig. 7.1.

Fig. 7.2(a) shows the initial longest path tree Ts in Gτ0 and the corresponding max heap. Next,

edge (b, c) which has the maximum key value is retrieved from the heap, and Ts is updated by

replacing edge (s, c) with (b, c) as shown in Fig. 7.2(b). This tree update makes Ts to be the

longest path tree in Gτ1 . We will continue the max heap update and tree update until a cycle

is found which gives us τ∗(G), as shown in Fig. 7.2(d).

7.3 Our Incremental Cycle Ratio Algorithm

We define an incremental change on an edge as a cost change on this edge, and an incre-

mental change on a node as the cost changes on all the input and output edges of this node.

The transition times remain to be the same for both the edge change and the node change. In
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(a) (b)

(c) (d)

Figure 7.2: An example of Karp and Orlin’s algorithm

Section III-A, we first look into details about how MCR is affected by an edge change. In Sec-

tion III-B, we consider the incremental changes happened on a node, which is the assumption

made by our algorithm.

7.3.1 Considering incremental changes on an edge

Let e denotes the changed edge. We use Ce to denote the set of cycles passing through e,

and when w(e) changes, only the cycles in Ce will be affected. In addition, we use G to denote

the graph before the change and G′ to denote the graph after the change, with corresponding

largest cycle to be c∗ and c∗′ respectively. Based on whether w(e) is decreased or increased and

whether e ∈ c∗ or not, we can separate the incremental changes into the following four cases:
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7.3.1.1 e /∈ c∗ and w(e) is decreased

This is the easiest case, as it can be guaranteed that c∗′ = c∗ after the incremental change.

Before the change happens, we know τ(c) ≤ τ(c∗) ∀c ∈ Ce. Since decreasing the cost of e will

only decrease τ(c) ∀c ∈ Ce, none of these cycles will get a chance to become larger than c∗.

Thus, c∗ will remain to be the largest cycle in G′.

7.3.1.2 e /∈ c∗ and w(e) is increased

Increasing w(e) will increase τ(c) ∀c ∈ Ce. It is possible that τ(c) of a cycle c ∈ Ce becomes

larger than τ(c∗) and thus dominates all other cycles and becomes the largest cycle in G′. If

this happens, we have c∗′ = c, and thus it can be guaranteed that c∗′ is passing through e.

7.3.1.3 e ∈ c∗ and w(e) is decreased

Decreasing w(e) will decrease τ(c∗). Thus, another cycle in G can replace c∗ and becomes

dominating in G′. If this happens, there is no clue for us to know where this new largest cycle

is located.

7.3.1.4 e ∈ c∗ and w(e) is increased

Increasing w(e) will increase τ(c∗) and also increase τ(c) ∀c ∈ Ce. Thus, it is guaranteed

that c∗′ is passing through e. However, there is no guaranteed that c∗′ = c∗. As an example,

let the graph in Fig. 7.1 to be G and the graph in Fig. 7.3 to be G′. It can be seen that after

increase w(c, a) from 12 to 400, the largest cycle also get changed.

7.3.2 Considering incremental changes on a node

Only considering changes on a single edge is certainly not enough, as applications typically

involve multiple edge changes. We can transform the multiple edge changes into single edge
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Figure 7.3: e ∈ c∗ and w(e) is increased.

change by only processing one edge at a time, but this can slow down the incremental MCR

algorithm. Therefore, instead of only considering a single edge change, our algorithm handles

the case of a single node change, which makes it more suitable for real applications. A single

node change can create more complicated situations compared with an edge change, as cycle

ratio of some cycles can decrease while others can increase at the same time. However, similar

to the edge change, only the cycles passing through the changed node will be affected. If the

change is happened on more than one node, our algorithm will just transform it to the single

node change by processing one node change at a time.

7.3.3 Considering HOW and KO incrementally

HOW and KO are not suitable to perform the MCR calculation incrementally. One reason

is that most of the middle information (i.e. node distances, the longest path tree) is calculated

based on Gτ whose edge lengths depend on the parameter τ . Once τ is changed, all edge

lengths in Gτ will be updated and the middle information calculated in the previous iteration

will become useless. It is also not realistic to keep these middle information for each possible

τ value, as the possible τ values correspond to all cycles in the graph whose total number

is exponential to the graph size. Another reason is that, the cycle ratio can change in both

directions when an incremental change is made, while HOW or KO can only search from one

direction. In particular, if MCR is decreased, it will be difficult for HOW to go backward and

locate the new largest cycle. Similarly for KO when MCR is increased. This also suggests the

incremental MCR algorithm needs to be able to search from both directions. When MCR is

increased, the algorithm can search upward starting from the previous MCR, similar to HOW.
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When MCR is decreased, the algorithm can search downward similar to KO. This is just the

basic idea of our algorithm, which we will discuss below.

7.3.4 An overview of our incremental MCR algorithm

An overview of our incremental MCR algorithm is shown in Fig. 7.4. Give an initial graph

G with its MCR to be τ∗(G) and the corresponding largest cycle to be c∗. Assuming a node v

in G is updated and the set of cycles passing through v is Cv, our algorithm first detects the

changing direction of MCR. If the MCR is detected as increased, we perform a local upward

search to identify the new MCR. If the MCR is detected as decreased, we perform a global

downward search to identify the new MCR. The output of our algorithm is τ∗(G′) and c∗′ for

G′ which denotes the graph after the change.

Figure 7.4: Overview of our incremental MCR algorithm.

7.3.5 Cycle detection

In the beginning, at our cost shifting step, we filter out the incremental change which will

not affect MCR. If this is the case, we can directly exit the MCR algorithm and output τ∗(G)

as τ∗(G′). If the change has a potential to affect MCR, we continue to detect whether the MCR

is increased or decreased. To do this, we first transform G into Gv by replacing node v ∈ V
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with two new node vs, vt. Next, we build the longest path tree Tvs rooted at vs. Based on the

longest distance from vs to vt, we will be able to detect the changing direction of MCR.

7.3.5.1 Cost shifting

As we discussed in Section III-A case 1), if the changed edge is not on c∗ and the edge cost

is decreased, we can guarantee that the MCR will not be affected. The idea of cost shifting

is to transform all edge changes into the above case, by shifting edge costs from the input (or

output) edges of v to the output (or input) edges of v. As an example, Fig. 7.5(a) shows the

current edge cost changes of v with 4 decreased edges and 1 increased edge. By shifting 9 units

of cost from the output edges of v to the input edges of v, we get the new cost changes shown in

Fig. 7.5(b). Assuming v /∈ c∗, since only decreased edges exist after cost shifting, this change

of v can be identified as not affecting MCR.

(a) (b)

Figure 7.5: (a) Before the cost shifting. (b) After the cost shifting.

In general, by applying the cost shifting idea, we can exit the MCR algorithm if v /∈ c∗ and

the increment change belongs to one of the following two cases: (1) all edge costs are decreased.

(2) all edge costs on one side (input or output) of v are decreased, and the smallest amount of

decreasing at the decreased side is largest than largest amount of increasing on the other side.

7.3.5.2 Transform G into Gv

If the incremental change has a potential to affect MCR, we continue to this step and

transform G into Gv as follows. We remove v from G and add two new nodes vs, vt to G, with
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vs connecting to all v’s output edges and vt connecting to all v’s input edges as shown in Fig.

7.6.

(a) (b)

Figure 7.6: (a) Before breaking at v. (b) After breaking at v.

Let τ0 = τ∗(G), we can get the corresponding Gvτ0 for Gv. Let Tvs denotes the longest path

tree rooted at vs. Then we can have the following Theorem:

Theorem 1. Tvs is well defined in Gvτ0 .

Proof: Before the incremental change, we have l(c) ≤ 0 ∀c ∈ Gτ0 . After the incremental

change, only the cycles passing through v can be positive in Gτ0 . Since all c ∈ Cv is broken at

v in Gvτ0 , they will not form a positive cycle in Gvτ0 . Therefore, we have l(c) ≤ 0 ∀c ∈ Gvτ0 , and

thus the longest paths in Gvτ0 are well defined.

7.3.5.3 Constructing Tvs on Gvτ0

Constructing Tvs on Gvτ0 is equivalent to the problem of finding a single source longest

path tree in a graph without positive cycle. Since Gvτ0 contains both negative and positive

length edges, Dijkstra’s algorithm is not applicable here. One way to construct Tvs is to use

the Bellman–Ford algorithm and update the node distances in a breath first search manner,

as suggested in [77]. However, the breath first search has a very limited control on the updat-

ing order of the nodes, and thus each node can be repeatedly updated for many times [15].

Therefore, the runtime of this approach is not good.

We propose a distance bucket approach to help us update the nodes in an appropriate

order, which can effectively reduce the total number of updates on each node and therefore
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speed up the process of constructing Tvs . The basic idea of the distance bucket approach is

similar to the Dijkstra’s algorithm: we always pick the node which has the largest distance

to update. Different from Dijkstra’s algorithm, this cannot guarantee that the updated node

will not be updated again, but the chance that this node get updated again will be much

smaller compared with a random updating order. Instead of maintaining a priority queue to

exactly find the node with largest distance, we only differentiate the nodes by putting them

into certain buckets based on the range of their distance. One reason we do this is that it is not

necessary to differentiate the node distances exactly, as repeated update of the nodes cannot be

avoided anyway. Another reason is that maintaining a priority queue is expensive, especially

considering the total number of edge update operations is huge.

Figure 7.7: The distance bucket data structure.

Assuming we have M + N buckets denoted from bucket[0] to bucket[M + N − 1] with M

buckets for negative distances and N buckets for positive distances, as shown in Fig. 7.7.

Let du be a unit range of distance covered by a bucket. Then, for a particular node v, its

corresponding bucket index can be calculated as M + d(v)/du. Instead of storing a copy of all

the contained nodes, the distance bucket only pointing to one of the contained node as shown

in Fig. 7.7. The rest of the contained nodes will simply be connected to the this node in a

doubly linked list manner. The details of our approach is shown in Algorithm 1.
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Algorithm 8 The distance bucket approach

Ensure: Constructing Tvs on Gvτ0 .
1: Insert s to bucket[0] and set max := 0;
2: while max > 0 do
3: Pick and delete node u from the bucket[max].
4: for each (u, v) ∈ Eτ0 do
5: if d(v) < d(u) + l(u, v) then
6: d(v) := d(u) + l(u, v);
7: Find the bucket index i based on d(v);
8: if v is not in any buckets then
9: Insert v to bucket[i];

10: else
11: Delete v from its current bucket;
12: Insert v to bucket[i];
13: end if
14: if i > max then
15: max := i;
16: end if
17: end if
18: end for
19: while bucket[max] is empty do
20: max := max− 1
21: end while
22: end while

7.3.5.4 Detecting the changing direction of MCR

After constructing Tvs , we can get d(vt) which is the longest distance from vs to vt in Gvτ0 .

If d(vt) > 0, it means a positive cycle passing through v exists in Gτ0 , and τ∗(G) < τ∗(G′).

Therefore, we search upwards to find the new MCR. If d(vt) = 0, it means τ∗(G) = τ∗(G′) and

c∗ remains to be the largest cycle in G′. So we can exit the MCR algorithm. If d(vt) < 0, it

means the largest cycle passing through v in Gτ0 is negative. If v /∈ c∗, we can exit the MCR

algorithm as the MCR will not be affected in this case. Otherwise, it means τ∗(G) > τ∗(G′)

and we search downwards to find the new MCR.

7.3.6 Local upward search

In this step, we search upwards until τ∗(G′) is identified. It is safe for us to only perform a

local search among all the cycles in Cv based on the following theorem:

Theorem 2. If τ∗(G′) > τ∗(G), c∗′ ∈ Cv.
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Proof: In Section III-A, the only cases which the incremental change can increase the MCR

are case 2) and case 4). As we have discussed, we can guarantee c∗′ is passing through the

changed edge e in both these two cases. Since e is connected to v, this means c∗′ must also

pass through v.

The strategy we used to perform the local upward search is similar to HOW. Assuming the

current cycle ratio is τi, we first increase τi to τi+1, which makes d(vt) = 0 in current Tvs . Next,

we construct the new Tvs in Gvτi+1
using Algorithm I and get the corresponding new d(vt). If

d(vt) > 0, it means there are still positive cycles existing in Gτi+1 whose cycle ratio is larger

than τi+1. So we repeat the first step and keep updating the cycle ratio. Otherwise, we can

exit the MCR algorithm and output τi+1 as τ∗(G′).

7.3.7 Global downward search

Our algorithm enters this step only when the cycle ratio of the previous largest cycle is

decreased, i.e., τ(c∗) < τ∗(G) in G′. In one case, c∗ might remain to be the largest cycle in G′

and we need to perform a global search to verify that τ(c) ≤ τ(c∗) ∀c ∈ G′. In the other case,

another cycle can replace c∗ and becomes the new largest cycle in G′. Since we have no clue

where this largest cycle is located, a global search for all cycles in G′ is also required.

We leverage KO to perform this downward global search. In particular, the Tvs we calculated

during the cycle detection can be reused here. Thus, instead of running KO starting from a

very large τ with the initial longest path tree as shown in Fig. 7.2(a), we can start KO from

τ∗(G) with Tvs . However, Tvs is a longest path tree in Gvτ0 rooted at node v, while the original

KO requires the longest path tree rooted at an artificial node s, as shown in Fig. 7.2. Simply

starting KO from τ∗(G) with Tvs will make all cycles c ∈ Cv cannot be examined, and the

algorithm will be incorrect if c∗′ ∈ Cv. Therefore, we modify KO like this: we add a pseudo

edge (vt, vs) which is connecting node vt to node vs, and insert (vt, vs) into the max heap with

key(vt, vs) = d(vt)/t(vt). If (vt, vs) is picked during the execution of KO, it means c∗′ ∈ Cv.

Since d(vt) represents the largest cycle in Cv, it is safe for us to exit the MCR algorithm and

output τ∗(G′) = d(vt)/t(vt).
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7.4 Timing-driven detailed placement

We propose a timing-driven detailed placement approach which applies our incremental

MCR algorithm. Considering the type of circuits, i.e. asynchronous circuits [9] or synchronous

circuits using retiming or clock scheduling techniques [34], whose performance is bounded by

the MCR of the most critical cycle (c∗) in the circuit. For asynchronous circuits, c∗ is defined

as the timing loop which has the largest cycle delay divided by the number of tokens along the

cycle. For synchronous circuits, c∗ is defined as the timing loop which has the largest cycle

delay divided by the number of flip-flops along the cycle. Here, we assume delay is proportional

to the wirelength. Given an initial legalized placement, our goal is to reduce the MCR of the

circuit by sequentially swapping a cell on c∗ with one which is not on c∗.

The basic idea of our approach is illustrated in Fig. 7.7. First, we randomly pick a cell on

c∗, i.e. cell v in Fig. 7.7. Next, we find the two neighboring cells of v on c∗, i.e. cell v1 and

v2. The coordinates of v1 and v2 can define an optimal region (x(v1), x(v2), y(v1), y(v2)) for v,

shown as the blue rectangle in Fig. 7.7. Assuming v′ is a cell within this optimal region, by

swapping v with v′, we can minimize the total Manhattan distance of (v1, v) and (v, v2). Thus,

τ(c∗) is reduced. However, it is possible that some cycle passing through v′ becomes worse

than c∗ after the swap. Hence, we need to perform timing analysis using the incremental MCR

algorithm to see whether the swap is beneficial before actually swapping the two cells. The

details of our approach is shown in Algorithm 2.

Figure 7.8: Timing-driven detailed placement.
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Algorithm 9 A timing-driven detailed placement approach

Ensure: Reduce MCR of the circuit
1: n = 1; /* loop counter */
2: best MCR = +∞;
3: while n < limit do
4: Randomly pick a cell v on c∗ with neighboring cells v1, v2;
5: Set optimal region := (x(v1), x(v2), y(v1), y(v2));
6: Set xopt := 0.5 ∗ (x(v1) + x(v2));
7: Set yopt := 0.5 ∗ (y(v1) + y(v2));
8: Move v to (xopt, yopt).
9: Incrementally calculate MCR;

10: for each v′ in optimal region do
11: Move v′ to (xv, yv);
12: Incrementally calculate MCR as current MCR;
13: if current MCR < best MCR then
14: best MCR = current MCR;
15: best node = v′;
16: end if
17: end for
18: Move v to (xbest node, ybest node);
19: Incrementally calculate MCR;
20: Move best node to (xv, yv);
21: Incrementally calculate MCR as best MCR;
22: n = n+ 1;
23: end while

7.5 Experiments

The proposed incremental mean cycle algorithm is implemented in C++ and runs on a

Linux PC with 94 GB of memory and 2.67 GHz Intel Xeon CPU.

We generate a set of random graphs following the same graph size and method used in [17].

Given an input total number of nodes and total number of edges, we first generate the desired

number of nodes in the graph. Next, we randomly pick two nodes in the graph and connect

them. This step is repeated until the desired number of edges is reached. The self loops (an

edge connecting a node to itself) and duplicated edges (two edges connecting the same pair of

nodes) are disallowed. In addition, we connect all the nodes using a circle to make the graph

strongly connected. Both the cost and transition of each edge are randomly generated between

1 and 300.

In the beginning (i.e., before any incremental changes are made), our algorithm uses KO

to find the initial MCR and the corresponding largest cycle as a starting point. For all the

random graphs and circuit benchmarks, our algorithm sets both the total number of negative
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and positive buckets to be 106. In addition, we set du to be 10. Thus, a distance range

[−107,+107] is covered, which is more than enough. In case any node has a distance below or

above this range, we will assign it to the first or last bucket. We implement three other MCR

algorithms for comparison: the linear programming (LP), HOW and KO. LP is formulated as

we discussed in Section II-A, and solved using the API of Gurobi optimizer [1]. Both HOW

and KO are implemented following the description in [18][17]. In particular, we implement a

binary heap as the max heap used in KO.

For each random graph, we sequentially perform 100 node changes and calculate the MCR

after each change. For each changing node, we randomly change the costs of all its input and

output edges. Two different methods are used to pick the changing node. In one method,

which we referred as “M1”, we randomly pick a node among all the nodes in the graph. Our

algorithm is able to run faster in this case, as only the upward search might be performed if

we are not changing c∗, which is quite often in M1. In another method, which we referred as

“M2”, we always pick a node on c∗ to change. This is the most difficult case for our algorithm,

as both downward and upward search might be performed.

Table 7.1 shows the experimental results for random graphs, which are divided into three

sets to simulate the applications with different scale. Columns “Init”, “M1” and “M2” reports

the initial MCR, the final MCR after 100 node changes using M1, and the final MCR after 100

node changes using M2 respectively. In general, LP is much slower than other algorithms. We

denote the runtime of LP as “–”, if it exceeds our runtime limit. Compared with HOW, our

algorithm is about 5X∼23X faster among all the experiments. The performance of HOW is

not good especially on large size graphs. Compared with KO, our algorithm is about 2X∼5X

faster among all the experiments. In addition, as expected, the runtime of our algorithm in M1

is better than the runtime in M2.

Table 7.2 shows analysis of our algorithm in M2 on medium and large size graphs. We

compare the runtime of our MCR algorithm using the distance bucket approach (DB) with our

MCR algorithm using the BFS approach in [77]. The column “Updates per node” shows the

average number of distance updates per node, and is calculated as (total # of node distance

updates)/( # of Tvs × # of nodes in the graph). It shows the DB approach is effectively
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reducing the updates per node and thus can achieve faster runtime. In addition, we show a

runtime break down of our algorithm using DB. The columns “CD”, “LUS” and “GDS” denote

the cycle detection, local upward search and global downward search process respectively.

We use ISPD 2005 benchmarks [55] as the circuit benchmarks. Assuming a hypernet is

connecting one output pin and p input pins of some gates, we represent this hypernet with p

two-pin nets, by connecting the output pin with each input pin. Since there is no cell library

type information in [55], we cannot calculate the wire delay. Instead, we set the cost of each

two-pin net to be its HPWL, and the transition time of each two-pin net to 1. In addition, we

ignore the fixed cells (i.e. terminals, macro blocks) and the nets connecting to them.

We stop the detailed placement if the improvement of MCR is less than 0.1% when we do

the swap. Since our algorithm needs to incrementally calculate MCR at each move, a swap

operation will need two calculations, while it only needs one calculation for HOW and KO.

Thus, line 9 and line 19 in Algorithm 2 is required for our algorithm, but it is not needed

for HOW and KO. Therefore, the total # of MCR calculations for our algorithm is larger

than HOW and KO in this application. Table 7.3 shows the experimental results on circuit

benchmarks. Columns “c∗ moves”, ”Skip moves” and ”Total moves” denote the # of moves on

c∗, the # of moves skipped using our cost shifting idea and the total # of moves respectively.

The runtime of the proposed detailed placement approach using three different MCR algorithms

for timing analysis is compared. In particular, the placer based on our MCR algorithm is about

2X faster than the KO version and 2.8X faster than the HOW version.

7.6 Conclusions

In this paper, we have proposed an incremental MCR algorithm which is able to calculate

the MCR more efficiently by considering the incremental changes. The previous MCR allows

us to break the graph at the changed node, and therefore detecting the changing directions

of the MCR by solving a longest path problem in a graph without positive cycle. Based on

the detected direction, our algorithm will either search upward or downward until the new

MCR is found. We preform experiments on both random graphs and circuit benchmarks. The

experimental results show our algorithm is more efficient compared with HOW and KO.
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